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Abstract

The Sentential Decision Diagram (SDD) is a recently
proposed representation of Boolean functions, contain-
ing Ordered Binary Decision Diagrams (OBDDs) as
a distinguished subclass. While OBDDs are character-
ized by total variable orders, SDDs are characterized
by dissections of variable orders, known as vtrees. De-
spite this generality, SDDs retain a number of proper-
ties, such as canonicity and a polyticAppl y opera-

tor, that have been critical to the practical success of
OBDDs. Moreover, upper bounds on the size of SDDs
were also given, which are tighter than comparable up-
per bounds on the size of OBDDs. In this paper, we an-
alyze more closely some of the theoretical properties of
SDDs and their size. In particular, we consider the im-
pact of basing decisions on sentences (using dissections
as in SDDs), in comparison to basing decisions on vari-
ables (using total variable orders as in OBDDs). Here,
we identify a class of Boolean functions where basing
decisions on sentences using dissections of a variable
order can lead to exponentially more compact SDDs,
compared to OBDDs based on the same variable order.
Moreover, we identify a fundamental property of the de-
compositions that underlie SDDs and use it to show how
certain changes to a vtree can also lead to exponential
differences in the size of an SDD.

Introduction

A new representation of Boolean functions was recently pro-
posed, called the Sentential Decision Diagram, with a num-
ber of interesting properties (Darwiche 2011). First, the n
tion of decisions performed on variables in Ordered Binary
Decision Diagrams (OBDDs) is generalized to a notion of
decisions performed on sentences in Sentential Decision Di
agrams (SDDs). Second, as total variable orders charaeteri

OBDDs (Bryant 1986), a special type of ordered trees, called
vtrees, characterize SDDs. Despite this generality, SD&s a

still able to maintain a number of properties that have been
critical to the success of OBDDs in practice. For example,
SDDs support an efficierAppl y operation as in OBDDs,
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and they are also canonical, under restrictions similaeto r
ductions in OBDDs.

On the theoretical side, an upper bound was identified on
the size of SDDs (based on treewidth) that is tighter than the
corresponding upper bound on the size of OBDDs (based on
pathwidth) (Darwiche 2011). In this paper, we investigate
more closely some further theoretical properties of SDDs.
In particular, we examine the impact that branching on sen-
tences can have on the size of SDDs, as opposed to branch-
ing on variables in OBDDs.

First, we consider a way to obtain vtrees for an SDD, by
dissectingvariable orders for OBDDs. We identify a class
of Boolean functions, where certain variable orders lead to
exponentially large OBDDs, but where certain dissections
of the same variable order lead to SDDs of only linear size,
suggesting that the ability to branch on sentences may be
a powerful one. In the process, we provide a more general
result, where we give a simple algorithm for constructing
SDDs of linear size, when the Boolean function of interest
corresponds to a tree-structured circuit.

Next, we identify a fundamental property of the decompo-
sitions that underlie SDDs and use it to prove further proper
ties of SDDs. For example, we show that simply swapping a
pair of children in a vtree can sometimes lead to exponential
differences in SDD size.

These results have an interesting implication on the po-
tential of SDDs in practice, as a generalization of OBDDs.
This implication is based on three observations. Firstesin
OBDDs with a particular variable order correspond to SDDs
with a restricted type of viree, the search space over SDDs
has embedded in it the search space of OBDDs. Next, effec-
tive dynamic variable re-ordering heuristics have beef cri
ical to the practical success of OBDDs. Finally, dissecting
a variable order can result in an exponentially more com-
pact SDD. As a result, effective algorithms that dynamycall
search for good vtrees (i.e., variable orders and theiediss
tions) could potentially further extend the reach and pract
cal use of decision diagrams.

Technical Preliminaries

We start with some technical and notational preliminaries.
Upper case letters (e.gX)) will be used to denote variables
and lower case letters to denote their instantiations, (e)g.
Bold upper case letters (e.&) will be used to denote sets



of variables and bold lower case letters to denote their in-
stantiations (e.gx).

A Boolean functiory’ over variablesZ maps each instan-
tiation z to 0 or 1. Theconditioningof f on instantiatiorx,
written f|x, is asub-functiorthat results from setting vari-
ablesX to their values inx. A function f essentially de-
pendson variableX iff f|X # f|-X. We write f(Z) to
mean thatf can only essentially depend on variable<Zin
A trivial function maps all its inputs t0 (denotedalse) or
maps them all td (denotedrue).

Consider a Boolean functiofi(X,Y) with disjoint sets
of variablesX andY. If

FY) = (pr(X) Asi(Y)) VeV (pa(X) A sn(Y))

then the se{(p1,s1),...,(pn,sn)} is called an(X,Y)-
decompositioof function f as it allows one to express func-
tion f in terms of functions oK and onY (Pipatsrisawat
and Darwiche 2010). The ordered pdips, s, ) are callecel-
ement®f the decomposition. Moreoverjf Ap; = false for

i # j, eachp; is consistent+£ false), and the disjunction of
all p; is valid (= true), then we cal{ (p1, s1), ..., (Pn,Sn)}
an (X, Y)-partition of function f (Darwiche 2011). In this
case, each; is called aprime and eacts; is called asuh
We say an(X, Y)-partition iscompressedf its subs are dis-
tinct, i.e.,s; # s; fori # j. Finally, the size of a decomposi-
tion, or partition, is the number of its elements. Note that b
definition,false can never be a prime in 4iX, Y )-partition.

In addition, iftrue is prime, then it is the only prime.

For example,{(A, B),(—A,false)} and {(A, B)} are
both (A, B)-decompositions of = A A B. However, only
the first is an( A, B)-partition. Decomposition$§(true, B)}
and{(A4, B), (A, B)} are both(A, B)-partitions of f =
B, while only the first is compressed.

Note that(X,Y)-partitions generalize Shannon decom-
positions, which fall as a special case wh¥ncontains a
single variable. OBDDs result from the recursive applica-

tion of Shannon decompositions, leading to decision nodes

that branch on the states of a single variable (i.e., lisgpréls
we show next, SDDs result from the recursive application of
(X,Y)-partitions, leading to decision nodes that branch on
the state of a set of variables (i.e., arbitrary sentences).

Sentential Decision Diagrams (SDDs)

As total variable orders characterize OBDDs, SDDs are
characterized by vtrees. Wreefor a set of variableX is

an ordered, full binary tree whose leaves are in one-to-one

correspondence with the variablesXn Figure 1(a) depicts

a vtree for variablesi, B, C and D. As is customary, we
will often not distinguish between a nodeand the subtree
rooted atv, referring tov as both a node and a subtree. The
vtree was originally introduced in (Pipatsrisawat and Dar-
wiche 2008), but without making a distinction between the
left and right children of a node. However, we make such a
distinction when dealing with SDDs by using andv” to
denote the left and right children of node

We can use a vtree to recursively decompose a Boolean

function f, starting at the root of a vtree. Consider node
v = 3 in Figure 1(a), which is the root. Thieft subtree

[B|-A]
(b) Graphical depiction of an SDD

[B[L] [=B[T]

Figure 1: Functiory = (AAB)V (BAC)V (C A D).

contains variableX = {A, B} and theright subtree con-
tainsY = {C, D}. Decomposing functiorf at nodev = 3
amounts to generating X, Y)-partition of functionf. If
{(p1,81);---,(Pn,sn)} is an (X, Y)-partition of function
f at nodev = 3, then each prime,; will be further de-
composed at node! = 1 and each sub; will be further
decomposed at nodé = 5. The process continues until we
have constants or literals.

Next, we provide a formal definition of an SDD. If we
denote an SDD by, then we denote the Boolean function
that SDD« represents bya). Formally, we say that is an
SDD that isnormalized for a vtree iff o andv fall under
one of the three following cases:

e a=_1,0ra=T,andvis aleaf!
Semantics{_L,) = false and(T,) = true.

e o= X ora = —X andv is a leaf with variableX.
Semantics{X) = X and(—X) = - X.

e a = {(p1,81)y.--5(Pn,sn)}, v is an internal node,
primespy, ..., p, are SDDs that are normalized for left
child v!, subssy, . . ., s,, are SDDs that are normalized for
right childv", and(p1), ..., (p,) is a partition (mutually
exclusive, exhaustive, an@;) # false for all p;).
Semantics{a) = /7, (pi) A (si).

A constant or literal SDD is calletérminal. Otherwise, it is

called adecompositionThe size of SDDu is obtained by

summing the sizes of all its decompositions.

Although the terminal SDDs representitrgie andfalse are
distinct for each leaf node, we will omit the subscripih T, and
1, when itis clear from the context.
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Upper Bounds

A CNF with n variables and pathwidthw is known to have

an OBDD of sizeO(n2P") (Prasad, Chong, and Keutzer
1999; Huang and Darwiche 2004; Ferrara, Pan, and Vardi
2005). Pathwidthpw and treewidthw are related byw =
O(wlogn); see, e.g., (Bodlaender 1998). Hence, a CNF
with n variables and treewidtls has an OBDD of size poly-
nomial inn and exponential inv (Ferrara, Pan, and Vardi
2005). As for SDDs, (Darwiche 2011) showed that the size
of an SDD need only bénear in n and exponential inv.
BDD-trees are also canonical and come with a treewidth
guarantee. Their size is lineanirbut at the expense of being
doubly exponential in treewidth (McMillan 1994). Hence,
SDDs come with a tighter treewidth bound than BDD-trees.

SDDs can be notated graphically as in Figure 1(b), where
a decomposition is represented by a circle with outgoing
edges pointing to its elements, and an element is repraekente
by a paired bokp[s], where the left box represents the prime
and the right box represents the sub. A box will either con-
tain a terminal SDD or point to a decomposition SDD. Here,
the number contained in each circle is the viree node that the
corresponding decomposition is normalized for.

Normalized SDDs are canonical given that they are com-
pressed (Darwiche 2011). An SDD éempressedf all of
its decompositions are compressed. Normalized SDDs also
support a polytimedppl y operation, allowing one to com-
bine two SDDs using any Boolean operator.

SDDs and OBDDs : .

A vtree is said to beight-linear if each left-child is a leaf. . Dissecting an OBD[_) ) )
The viree in Figure 2(a), for example, is right-linear. The One can view a vtree as the result of dissecting a total vari-
compressed SDD in Figure 2(b) is normalized for this right- able order in the following sense.

linear vtree. Every decomposition in this SDD has the form Definition 1 (Dissection) We say that a vtre& inducesa
{(X,a), (=X, )}, which is a Shannon decomposition, or variable orderr if and only if a left-right traversal of vtree

of the form (T, ). This is not a coincidence as it holds T visits leaves (variables) in the same orderasln this

for all compressed SDDs that are normalized for right-linea case, we also say that vtreis a dissectiorof order .

vtrees. In fact, such SDDs correspond to quasi-reduced OB~ rig e 3 depicts two different virees that result from dis-

DDs in a precise sense; see Figure Z(Gonsider a quasi-  secting the same variable order. Consider now an OBDD
reduced OBDD that is based on the variable order induced with respect to a variable orderand an SDD3 with respect

by the given right-linear vtree. Every decomposition in the 4 5 gissection of order. We will say in this case that SDD
SDD corresponds to a decision node in the OBDD and every gis 5 gissection of OBDIx. Our main goal in this section is

decision node in the OBDD corresponds to a decomposition 4 answer the following question: Can dissecting an OBDD

or literal in the SDD. In a quasi-reduced OBDD, a literal is g4 1o an exponential reduction in its size? The answer is
represented by a decision node witlind1 as its children, affirmative as given by the following theorem.

e.g., the literalD in Figure 2(c). However, in a compressed i .
SDD, a literal is represented by a terminal SDD, e.g., the Theorem 1 There exists a class of Boolean functighsa
literal D in Figure 2(b). corresponding variable order, and a corresponding vtree

-~ T that dissects order, such that the quasi-reduced (or re-
’A quasi-reduced OBDD is a minimal-size OBDD that men- duced) OBDD induced by is exponentially larger than the

tions every variable in its variable order in all paths from root to  normalized and compressed SDD induced by
leaf. Quasi-reduced OBDDs are also canonical, and are at most a

factorn + 1 larger than the corresponding reduced OBDD (We- We will now consider a class of functions that satisfies the
gener 2000). Quasi-reduced OBDDs can also be found by repeated conditions of Theorem 1. L&X = {X,,..., X,,} andY =
applications of the merging rule (without the elimination rule) from  {Y1,...,Y,}. The functionf,, (X,Y) is defined inductively

a complete binary decision tree. as follows:



(a) Formulaf;

(b) Formulafs,

(c) Formulaf,

Figure 4: Circuit realizations of a functiofj,(X,Y) that
satisfies Theorem 1.

o Ifn=1, thenfl(Xl,Yl) =X AY.
e Ifn>1, '[henfn()(l7 X, Y, 7Yn)
= [fn—l(Xla cee »Xn—hYl, o ;Yn—l) ¥ Xn] A Yn
whered is the exclusive or operator.

Figure 4 depicts circuit realizations of functigh (X,Y)
forn = 1, 2, 4. We start with a number of observations about
this function before we prove the main result.

Lemmal f.|xy = @, =i, wherek = 0 if y; = true
for all i; otherwise k is the largest index wherg, = false.

Proof If y; = true for all ¢, then f,,|xy simplifies tox; ®
... ® zy,. If kis the largest index such thgt = false, then
y; = truefor all j > k. Inthis casefi|xy = 0, frt1|xy =
zk+1 and, hencef,|xy = 241 ® ... ® zp. O

Lemma 2 For every pair of instantiationg # x*, there is
an instantiationy such thatf,, |xy # fn|x*y.

Proof Let k be the largest index for which instantiatiors
andx* disagree on variabl&,. Consider the instantiation
y that setsy7, ..., Y, tofalse andYy, ..., Y, to true. By
Lemmal,

falxy=2r®...®x, and fp|x'y=z;&... 0.
Sincex, # zj andz; =
fnlxy # fIx*y. O

Corollary 1 For every pair of instantiationsx # x*,

falx # fa|x* and, hence, the conditioning ¢f, on vari-
ablesXy,..., X, generate" distinct sub-functions.

The first part of Theorem 1 follows from the following
corollary, which itself follows immediately from the Sieti
and Wegener bound (Sieling and Wegener 1993).

xy for ¢ > k, we must have

Corollary 2 A quasi-reduced (or reduced) OBDD for func-
tion f,, with respect to any variable ordering that starts with
variables X, ..., X,, must have at least* nodes.

Thus, the variable order = (X,,,..., X1,Y7,...,Y,), for
example, yields an OBDD with at lea&t nodes.

We will now show the second part of Theorem 1, in which
we dissect such an OBDD, obtaining an SDD whose size is
only linear inn. In fact, we show a more general result: for
any function that is represented by a tree-structured itircu
there is an SDD whose size is linear in the number of circuit
variables. The result is based on the following theorem.

Theorem 2 Let f(X) and g(Y) be two Boolean functions
whereX NY = (. If o is a Boolean operator, then function
f o g has the following X, Y)-partition:

{(f,trueo g), (—f, falseo g)}.

Moreover, the(X, Y)-partition is compressed when opera-
tor o is commutative and not trivial, and functignis not
trivial.

Proof If x is an instantiation that satisfies functignthen
(f o g)|x = true o g. Otherwise, ifx is an instantiation that
satisfies-f, then(f o g)|x = false o g. Hence,

{(f;true o g), (=f, false 0 g)}

is an(X,Y)-partition of functionf o g. For example, when
o = A, we have

{(f,true A g), (=ffalse A g)} = {(f,9), (=], false)}.

Wheno = @, we have

{(f,true @ g), (=f,false ® g)} = {(f,~9), (=, 9)}-

By definition, the (X,Y)-partition is compressed when
true o g # false o g, which holds when operateris commu-
tative and not trivial, and functiogis not trivial 2 [

Given Theorem 2, we can construct an SDD of linear size,
for any function that has a tree-structured circuit, as fol-
lows. Assuming that each gate has two inputs, we simply
use the circuit structure as our vtrésee the circuit in Fig-
ure 4(c) and the vtree in Figure 7(a). Note here that there is
a vtree node for each primary input and gate of the circuit.
We can now construct the SDD recursively, as shown in Al-
gorithm 1. Constructing SDDs for primary inputs is the base
case here. Given that we have SDDs for the two inputs of
a gate, we can construct an SDD for the gate immediately
using Theorem 2. Algorithm 1 appeals to two additional re-
sults. The first result, from (Darwiche 2011), says that one
can negate afiX, Y)-partition by simply negating its subs.
The second states that applying a Boolean operatora

3Suppose functiow is not trivial. Thentrue o ¢ = false o g
impliesthatlo1l = 0ol andlo0 = 000. Sincelo0 =001, we
thenhavelo1 =001 =100 = 000. This implies that operator
o is trivial, which is a contradiction. Hencemue o g # false o g.

“4If the circuit contains a gate with more than two inputs, the
gate can be replaced with a sub-circuit over just binary gates.



Algorithm 1 sdd-t r ee(v)

input: A tree-structured circuit with primary output Each
gate is non-trivial and has exactly two inputs.

output: A pair of SDDs(a, o*) representing the function of
circuit v and its negation.
main:
if v represents a primary inpuf then

return (X, -X)
. else
. v, v" « the two sub-circuits feeding into gate
(B,8%) + sdd-tree(v)
(7,7*) + sdd-tree(v")
o < Boolean operator corresponding to gate

:m < Appl y(true,v,0) {returnsy, v*, T or L}
9: 1o + Appl y(false,~, o) {returnsy, v*, T or L}

1:
2
3
4:
5:
6:
7
8

10: « $— {(Banl_)7(6*7n0)}

11:  nj < negation ofy; {returnsy, v*, T or L}
12: 7} < negation ofy, {returnsy, v*, T or L}
13 o « {(B,n7), (B n5)}

14:  return (o, a*)

constant and functiofi yields either a constant, the function
f, orits negation- f (see Lines 8 & 9 of Algorithm 15.

It should be clear that Algorithm 1 has a linear complex-
ity in the number of circuit inputs as it adds at most two
SDD nodes for each recursive call, each of which has two
elements. Since the functigfy (X, Y) identified earlier has
a tree-structured circuit, it must then have an SDD of lin-
ear size when using the vtree corresponding to its structure
Figure 7 depicts such a viree far= 4, together with the

A

Y3 Y,

Figure 5: Aright-linear vtree.

in fact variable orders that lead to OBDDs (and SDDs) of
polynomial size, for exampley = (Y,,, X,,,..., Y1, X1).
However, the fact that dissections can obtain exponermtial r
ductions in size for a given variable order, has some interes
ing practical implications. In particular, it suggeststttg-
namically searching for good dissections may be a promis-
ing direction to pursue. Sifting algorithms, for example,

corresponding SDD. Note that this viree dissects the order which are based on swapping neighboring variables in a total

7= (Xy,...,X1,Y1,...,Ys). We then have the following
corollary, which proves the second part of Theorem 1.

Corollary 3 There is a normalized and compressed SDD of
function f,,, of sizeO(n), corresponding to a dissection of
the orderr = (X,,,..., X1, Y1,...,Y,).

We have thus shown that dissecting an OBDD into an SDD
can lead to an exponential reduction in size, suggestirtg tha
the ability to branch on sets of variables (sentences) inSDD
may be a powerful one.

Figure 5 depicts a right-linear vtree corresponding to
the orderr = (X4,...,X1,Y1,...,Ys) and Figure 6 de-
picts the corresponding SDD, which also corresponds to an
OBDD in this case. Hence, the SDD in Figure 7(b) can be
viewed as a dissection of the one in Figure 6.

Finally, we remark that we have identified a class of
Boolean functions, where certain variable orders lead {0 ex
ponentially large OBDDs, but where certain dissections (re
specting the same variable order) lead to SDDs of only linear
size. In the example we introduced in this section, there are

°To show thattrue o f € {true,false, f,—f}, letlol = a
and1 o0 = b. If a = b, thentrue o f is a trivial function. If
a = 1andb = 0, thentrue o f = f. Otherwiseag = 0,b =1
andtrue o f = —f. A similar argument can be used to show that
false o f € {true, false, f,~f}.

variable order, have been particularly effective for dyiam
variable re-ordering (Rudell 1993). Dissection introduiee
new dimension that would allow SDDs to navigate around
barriers that could be faced when only navigating variable
orders using OBDDs.

On the Left-Right Order of Vtrees

In this section, we consider the following question: Can
switching the left and right children of a vtree node lead
to an exponential change in the size of the corresponding
SDD? The answer is affirmative as we show next.

Consider the following function:

n i—1
foXn o X Y, V) =\ |\ X | A XA Y
i=1 |j=1

This function has a compressé€X, Y)-partition of sizen,
with thei*" prime beingp; [/\2;11 ﬂX]} A X, and thei'®
sub beings; = Y;. Yet, the compressefl’, X)-partition of
function f,, is of size2™. To see this, consider an instanti-
ationy of variablesY. The sub-functionf,, |y corresponds

to a disjunction of a set of primes that are unique to instan-
tiation y. Primes are mutually exclusive, so the disjunction
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Figure 6: An SDD for the right-linear vtree in Figure 5. The BPDorresponds to an OBDD and is equivalent to the SDD in

Figure 7(b).

itself is also unique to instantiatign Thus, there arg™ dis-
tinct sub-functions of the fornf,,|y. Further, instantiations
y are the primes of the unique, compres&¥d X)-partition
of function f,,, which must have sizg".

There is an SDD of sizé&(n) for the function f,, if it
uses a vtree with roatwhere: (1) variablex4, . . ., X,, ap-
pear in the left subtree and variablgs, ... Y, appear in
the right subtree, and (2) the left subtree is right linear fo
orderX,, ..., X; and the right subtree is right linear for or-
derYy,...,Y,. If we now switch the left and right subtrees
of root v, the corresponding SDD must have sf2€") as
it must include &Y, X)-partition of functionf,,. Thus, the
left-right order of a viree can lead to an exponential differ
ence in the size of corresponding SDD.

eratorso, i.e., the sefF* is the smallest set whetg C F*

and wheref, g € F* implies f o g € F*, for all Boolean
operators. Moreover, define thbasisG of a setF to be the
set of nonfalse functionsg € F* such that for aly’ € F*,

if ¢ = gtheng’ = g. That is, the basi§ of a setF is the
set of minimal norfalse functions in the closuré&™ under
the partial ordering=.

First, we characterize the properties of a basis.

Theorem 3 A set of Boolean functiong = {g, ...
is the basis of a seF = {fi,...
following conditions hold:

, s gm}
, fn} if and only if the

(a) Forall g; € G, we havey,; # false.
(b) Forallg; € Gandf; € F, eitherg; |= f; or g; =~ f;.

In the remainder of this section, we show a more gen-(C) Forallg; € G, all F; = {f; € F | g |= f;} are distinct.

eral result on the relationship between the compressedd) g; Vv - - -

(X,Y)-partition of a functionf(X,Y) and its (X,Y)-
decompositions, which implies our result above. Central to
this general result is the notion of a basis.

The Basis of a Set of Boolean Functions

Let F = {f1,..., fn} be a set of Boolean functions, and
let 7* denote the closure of with respect to Boolean op-

= false for all i # j.
The proof of this theorem is delegated to the Appendix.

V gm = true andg; A g;

Decompositions and Partitions
We now have the following interesting theorem.
Theorem4 Let{(g1(X),h1(Y)),..., (gn(X), hn(Y))}

be an(X,Y)-decomposition of a functiofi(X,Y), and let
P be the basis of the functiong, ..., g,. ThenP are the
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primes of an(X, Y)-partition of function f. Moreover, if
the functionshy, . . ., h,, are mutually exclusive, theR are
the primes of the unique, compress&, Y)-partition of
function f.

The proof of this theorem is also delegated to the Appendix.
The importance of this theorem is that it allows one to use
knowledge about the bases of Boolean functions to derive
results about the sizes ¢X, Y )-partitions. For example,
we will show next that the basis of a set of Boolean func-
tions can be exponentially smaller or larger than the number
of such functions. We will then show that this implies the
concrete result we showed earlier in the section: The size of
the compresse@X, Y )-partition of a functionf(X,Y) can

be exponentially different than the size of its compressed
(Y, X)-partition.

Consider first the sef of all Boolean functions over vari-
ables X,...,X,.. Note that there ar@2" such Boolean
functions. The closure of s& under Boolean operators is
the setS itself. Hence, the basis of s&tcorresponds to the
set of all2™ instantiations over variableX, ..., X,,. This
is an example where the size of the basis of Boolean func-
tions S is exponentially smaller than the size of the Set

Consider now the sef of Boolean functionsfy, ..., f
over variablesXy, ..., X,,, wheref; = X;. The closure of

S under Boolean operatorsis the set of all Boolean func-
tions over variables(y, ..., X,,. Thus, the basis of s& is

the set of Boolean functions corresponding to2hénstan-
tiations of variablesXy, ..., X,,. This is an example where
the size of the basis of Boolean functio§sis exponen-
tially larger than the size of the s&t This observation and
Theorem 4 implies the result we showed earlier in the sec-
tion, in which we showed a functiofi(X,Y) whose com-
pressed X, Y )-partition and compressedy’, X)-partition
have sizes that differ exponentially.

Conclusion

We considered in this paper the size of a decision diagram
from the viewpoint of basing decisions on sentences (i.e.,
sets of variables), as in SDDs, in contrast to basing deci-
sions on literals (i.e., single variables), as in OBDDs. We
first identified a class of Boolean functions where, for a
given variable ordering, there is a dissection of that onder
that results in an SDD that is exponentially smaller than the
corresponding OBDD. In the process, we provided a gen-
eral algorithm for constructing compact SDDs from tree-
structured circuits. We further identified a fundamentalpr
erty of the decompositions that underlie SDDs, which we
used to show how switching children in a vtree can also lead
to exponential differences in the size of an SDD.
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Proofs

Proof of Theorem 3. Note that conjoin and complement
are sufficient to induce the closusg*. We first show that
Conditions (a—d) are necessary for aget {g1,...,9m}

to be the basis of sef = {f1,..., fu}.

(a) By definition of a basis.
(b) Suppose that Condition (b) does not hold, i®.}~= f;

andg; = —f;. This implies thatg; A f; # false. and

N —f; # false. Moreover, functiong; A f; is in the
closureF*. However,g; A f; = g;, which implies thay;
is not a basis function, which is a contradiction.

(c) Suppose; has the corresponding sgt. We want to show

thatg; is equivalent to the function

=(ANACA )

fer; FEF\F:
From Condition (b), we know that either = f or g; =
—f for eachf € F. Thus, if we show thay; = ~, we
know that eacl¥; is distinct, since each; is distinct. By
definition, g; = f for all f € F;, and thusg; = —f
for all f € F\ F;. Moreover, we have that; = v and
further thaty # false sinceg; # false. If we conjoin to
~ any function inF, we either get backy or false (by
construction ofy). Note that any function in the closure
F* can be represented as a disjunction of terms

(AN )

fEF\H



for someH C F. Thus, if we conjoin tey any function in
the closureF*, we also get back either or false. Since

v € F*, functiony must be a basis function, and thus
7 = gi (sinceg; = 7).

(d) First,ify = g1 V-V g, # true, then—y # false.
Moreover, for allg; € G, g; £ —. Since—y € F*,
function —y should have been a basis function, which is
a contradiction. Next, if there arg, g; € G wherey =

g; N\ g; # false, theny = g; andy = g;, which by the
definition of a basis, implies that= ¢; = g;, which is a
contradiction.

Next, we show that Conditions (a—d) are sufficient for a set
G to be the basis of a séf. For each functiony; € G, let
Fi={f; € Flgi = f;}, and let

Vi = (fé}rif)/\(

which is in the closureF*. First, by Condition (b), since
gi E fforall f € F;, we know thatg; &= —f for all
f € F\ Fi, and further thay; = ;. Sinceg; # false by
Condition (a), we also know that # false, sinceg; = ;.
Next, by Condition (c), for any; andg; for i # j, there
is a functionf € F wheref € F;, and f ¢ F; (or vice
versa). Thusy; = f andy; = —f (or vice versa), and so
vi A y; = false for all i # j. Third, by Condition (d), all
gi € G are mutually exclusive and exhaustive. Sinceall
are mutually exclusive, and singe = ~;, the functionsy;
are also exhaustive. Henag, = ~; for all <. Fourth, if we
conjoin tog; = ~y; any function inF*, we either get back
gi = ~; orfalse. As g; = ~; € F*, functiong; must be a
basis function ofF. Finally, since ally; € G are mutually
exclusive and exhaustive, the $emust be a basis of. O

A 1),

FEF\TF:

Proof of Theorem 4. Let P be the basis of the functions
g1, - -, gn. Since the basis forms a partition (mutually ex-
clusive, exhaustive, and all; # false), we just need to
show that for each; € P and instantiations andx* where

x | p; andx* = p;, we must havef|x = f|x*. Suppose
x = p; andx* = p;. By Condition (b) of Theorem 3, either
pi = g; Or p; = —g;. Hence, instantiations andx* imply
the same set of functiong implied byp;, leading to

flx=flx* = \/ by

piFFg;

which is the sub of prime;.

Suppose now that functiorfs; are mutually exclusive.
Consider any two instantiationsandx* such thatk = p;
andx* = p,; wherei # j. By Condition (c) of Theorem 3,
primesp; andp; imply different setsy,. Hence,

flx= \/ hj # \/ hj = flx*
piFEg; pil=9;

since functionsh; are mutually exclusive. Hence, the subs
of primesp; andp; are distinct and théX, Y)-partition is
compressed.]
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