
On Training Neurons with Bounded Compilations

Lance Kennedy , Issouf Kindo and Arthur Choi
Department of Computer Science, Kennesaw State University

lkenne31@students.kennesaw.edu issouf kindo@yahoo.fr, achoi13@kennesaw.edu

Abstract

Knowledge compilation offers a formal approach to explain-
ing and verifying the behavior of machine learning systems,
such as neural networks. Unfortunately, compiling even an
individual neuron into a tractable representation such as an
Ordered Binary Decision Diagram (OBDD), is an NP-hard
problem. In this paper, we consider the problem of training a
neuron from data, subject to the constraint that it has a com-
pact representation as an OBDD. Our approach is based on
the observation that a neuron can be compiled into an OBDD
in polytime if (1) the neuron has integer weights, and (2) its
aggregate weight is bounded. Unfortunately, we first show
that it is also NP-hard to train a neuron, subject to these two
constraints. On the other hand, we show that if we train a
neuron generatively, rather than discriminatively, a neuron
with bounded aggregate weight can be trained in pseudo-
polynomial time. Hence, we propose the first efficient al-
gorithm for training a neuron that is guaranteed to have a
compact representation as an OBDD. Empirically, we show
that our approach can train neurons with higher accuracy and
more compact OBDDs.

1 Introduction
Over the past decade, rapid advances in artificial intelligence
(AI), coupled with the increasing pervasiveness of AI, has
brought with it the need to better understand and explain
the behavior of the resulting systems. As a result, a new
sub-field of AI, called eXplainable Artificial Intelligence
(XAI) has arisen (Baehrens et al. 2010; Ribeiro, Singh,
and Guestrin 2016; Ribeiro, Singh, and Guestrin 2018;
Lipton 2018). Formal approaches to XAI, in particular,
seek to provide mathematical guarantees on the behavior
of such systems, e.g., by providing bounds on the output
of a neural network—say, a guarantee that a self-driving
car does not exceed safe driving speeds (Katz et al. 2017;
Leofante et al. 2018; Shih, Choi, and Darwiche 2018b;
Shih, Choi, and Darwiche 2018a; Ignatiev, Narodytska,
and Marques-Silva 2019; Audemard, Koriche, and Marquis
2020; Cooper and Marques-Silva 2021).

Our paper is motivated by the knowledge compilation ap-
proach to formal XAI (Shih, Choi, and Darwiche 2018b;
Shi et al. 2020; Audemard, Koriche, and Marquis 2020).
Knowledge compilation is another sub-field of AI that stud-
ies in part tractable representations of Boolean functions,

and the trade-offs between their succinctness and tractabil-
ity (Selman and Kautz 1996; Cadoli and Donini 1997;
Darwiche and Marquis 2002). By enforcing different prop-
erties on the compiled representation, one can obtain greater
tractability (the ability to perform certain queries and trans-
formations in polytime) at the expense of succinctness (the
size of the representation).

Consider the Ordered Binary Decision Diagram (OBDD),
a popular target representation for knowledge compilation.
If we can represent the decision function of a neural network
into a representation such as an OBDD, then the OBDD
would facilitate the explanation and formal verification of
the neural network’s behavior, due to the many polynomial
time operations and transformations supported by OBDDs
(Shih, Choi, and Darwiche 2018a; Shih, Choi, and Dar-
wiche 2019; Audemard, Koriche, and Marquis 2020). This
includes different types of formal analyses on a neural net-
work, including the verification of its monotonicity or its
robustness. Unfortunately, compiling a neural network to an
OBDD is an NP-hard problem. In fact, compiling an indi-
vidual neuron to an OBDD is an NP-hard problem (Shih,
Choi, and Darwiche 2018b; Shi et al. 2020).

More generally, it is NP-hard to compile a linear classifier
to an OBDD. In this paper, we propose a principled approach
for training such a classifier directly from data, subject to
the constraint that it has a compact representation as an
OBDD. Our approach is based on the observation that a lin-
ear classifier will admit a pseudo-polynomial time compila-
tion if its weights are integers. In particular, if the aggregate
weight of such a classifier is bounded, then it admits a com-
pact representation as an OBDD (Chan and Darwiche 2003;
Shi et al. 2020). Hence, if we can train a linear classifier
that (1) has integer weights, and (2) has bounded aggregate
weight, then we can train a classifier that is guaranteed to
have a compact OBDD. We first find that, unfortunately,
learning such a classifier is also an NP-hard problem. De-
spite this, we find that a linear classifier will also admit a
pseudo-polynomial time algorithm, if they are trained in a
generative (as opposed to a discriminative) way. We fur-
ther show that this same algorithm can also be used to ap-
proximate a discriminative classifier by one that uses integer
weights, and with arbitrary fidelity. Empirically, we show
that we are able to learn linear classifiers with more com-
pact representations as OBDDs, and with higher accuracy.

A

B

C

B

1 0

(a) An OBDD
A B C

(b) A circuit

Figure 1: An OBDD and circuit representation of a linear classifier
A+B − C ≥ 1

2
.

Several approaches to training neural networks with in-
teger, and even binary, weights have been proposed in the
literature. XNOR-Networks, for example, are trained with
binary weights (Rastegari et al. 2016). The binarized neural
networks (BNNs) of (Hubara et al. 2016) have binarized pa-
rameters and activations. (Narodytska et al. 2018) showed
that BNNs have neurons that simplify to threshold gates.
(Shih, Darwiche, and Choi 2019) compiled binarized neural
networks to OBDD, but managed the complexity of com-
pilation by reducing its scope. Our work follows (Shi et al.
2020) who compiled another class of binary neural networks
to OBDD, by compiling its individual neurons to OBDDs,
and then aggregating them. More specifically, the authors
trained a neuron normally, and then truncated its weights un-
til the neuron (as a linear classifier) became compilable—a
much less principled approach compared to ours.

This paper is organized as follows. First, we provide tech-
nical background in Section 2. In Section 3, we introduce
the problem of training a linear classifier with a compact
OBDD, and show that this is an NP-hard problem. In Sec-
tion 4, we identify conditions under which such a classifier
can be trained in pseudo-polynomial time. We provide an
empirical analysis of our algorithm in Section 5, and show
how it facilitates the explanation of a linear classifier, via a
case study in Section 6. Finally, we conclude in Section 7.

2 Technical Preliminaries
In this paper, we consider a family of linear classifiers that
include neurons (with step activations) as a special case.
Consider first a neuron of the form

f(x) = σ(wTx+ b)

where x is the input vector, w is the weight vector, b is a
bias, and σ is an activation function. Such a neuron can be
viewed (locally) as a linear classifier, with features x. For
the purposes of training a neuron/classifier, we assume a sig-
moid activation function σ(z) = (1 + exp{−z})−1, which
is continuous and allows us to train a classifier using gradi-
ent descent. For the purposes of testing a neuron/classifier,

we assume a step activation function σ(z) = 1 if z ≥ 0
and σ(z) = 0 otherwise. A step activation is not continuous
(and hence, not used for training), and it is also equivalent
to rounding the output of a sigmoid activation. Consider the
following more general notion of a threshold-based linear
classifier, which we focus on in the remainder of the paper.
Definition 1 (Linear Classifier). Let X be a set of binary
features where each feature X in X has a value x ∈
{−1,+1}. Let x denote an instantiation of variables X.
Consider functions f that map instantiations x to a value
in {0, 1}. We call f a linear classifier if it has a decision
function with the following form:

f(x) =

{
1 if

∑
x∈x wX · x ≥ T

0 otherwise (1)

where x ∈ x is the value of variable X in instantiation x,
and where we have a threshold T (or a negative bias −b)
and a weight wX for each variable X ∈ X.

Neurons (with step activations) and logistic regression are
both types of threshold-based linear classifiers. Such a clas-
sifier has binary inputs and a binary output, and hence the
classifier has a decision function that is a Boolean function.
For the remainder of the paper, we focus on linear classifiers
(and neurons) that induce Boolean decision functions.

If we can extract the Boolean function of a linear classi-
fier, then to explain the behavior of the classifier, it suffices
to explain the behavior of the Boolean function. In particu-
lar, we want a tractable representation of this Boolean func-
tion that will support polytime queries and transformations
that facilitate such formal explanation and verification.

As an example, consider a linear classifier with 3 inputs
A,B and C with weights w1 = 1, w2 = 1 and w3 = −1
and a threshold of 1

2 . This classifier outputs 1 iff:

A+B − C ≥ 1

2
We can visualize the decision function of this classifier, by
enumerating all possible inputs and the corresponding out-
put, as we would in a truth table:

A B C f
+1 +1 +1 1
+1 +1 −1 1
+1 −1 +1 0
+1 −1 −1 1

A B C f
−1 +1 +1 0
−1 +1 −1 1
−1 −1 +1 0
−1 −1 −1 0

Figure 1 highlights two logically equivalent representations
of this classifier’s Boolean function. Figure 1a highlights
an Ordered Binary Decision Diagram (OBDD) representa-
tion1 and Figure 1b highlights a circuit representation. These
functions are equivalent to the sentence:

[¬C ∧ (A ∨B)] ∨ [C ∧A ∧B],

1An Ordered Binary Decision Diagram (OBDD) is a rooted
DAG with two sinks: a 1-sink and a 0-sink. An OBDD is a
graphical representation of a Boolean function on variables X =
{X1, . . . , Xn}. Every OBDD node (but the sinks) is labeled with a
variable Xi and has two labeled outgoing edges: a 1-edge and a 0-
edge. The labeling of the OBDD nodes respects a global ordering
of the variables X: if there is an edge from a node labeled Xi to a
node labeled Xj , then Xi must come before Xj in the ordering. To
evaluate the OBDD on an instance x, start at the root node of the

if we take +1 to be true and −1 to be false. From this sen-
tence, we see that if C is −1 (false) then A or B must be
+1 (true) to meet or surpass the threshold 1

2 , and if C is +1
then both A and B must be +1.

In this paper, we seek to compile a linear classifier into
a tractable representation in the form of an OBDD, i.e., we
seek to obtain an OBDD representation of a classifier’s de-
cision function. As OBDDs support many polytime oper-
ations and transformations, the ability to compile a classi-
fier into an OBDD will allow us to explain and verify its
behavior more efficiently. Note that while linear classifiers
are generally considered interpretable (say, its weights and
parameters have semantics or meaning), they may still not
support formal verification of its behavior. For example,
consider the following decision problem:

ϵ-DECISION-BOUNDARY (ϵ-DB): Given a linear
classifier f and ϵ ≥ 0, does there exist an input x where∣∣∣∣∣ T −

∑
x∈x

wX · x

∣∣∣∣∣ ≤ ϵ?

Decision problem ϵ-DB asks whether there is an input set-
ting that is ϵ-close to the decision boundary. The ability to
answer this question provides insight on the robustness of
a classifier to changes in its parameters, for example. How-
ever, this question is still hard to answer for linear classifiers.

Proposition 1. ϵ-DB is NP-complete.

A proof of Proposition 1 appears in the Appendix. Unfor-
tunately, the problem of compiling a linear classifier into an
OBDD, is also a problem that appears to be intractable.

Theorem 1. Given a linear classifier, compiling an OBDD
representing its decision function is an NP-hard problem.

The proof follows (Shih, Choi, and Darwiche 2018b). De-
spite this apparent intractability, there is a broad class of
linear classifiers that can be compiled to OBDD in pseudo-
polynomial time.

Definition 2 (Integer Linear Classifier). We call a linear
classifier an integer one iff all the weights wX and the
threshold T are also integers. We refer to the sum W =
|T |+

∑
X∈X |wX | as the aggregate weight of the classifier.

We can compile an integer linear classifier to an OBDD
in polynomial time, if its aggregate weight is bounded. In
Section 6, we will also revisit the ϵ-DB problem, and see
how it can also be solved efficiently in this case.

Theorem 2. Consider an integer linear classifier having an
aggregate weight of W over n binary features. Such a clas-
sifier can be represented by an OBDD of size O(nW) nodes,
and compiled in O(nW) time.

A proof of this theorem is provided in (Shi et al. 2020).
Variations of this theorem have appeared in the literature in
varying forms (Chan and Darwiche 2003; Shih, Choi, and

OBDD and let xi be the value of variable Xi that labels the current
node. Repeatedly follow the xi-edge of the current node, until a
sink node is reached. Reaching the 1-sink means x is evaluated to
1 and reaching the 0-sink means x is evaluated to 0 by the OBDD.

Darwiche 2018b; Chubarian and Turan 2020). Note that a
classifier with fixed-precision floating-point weights is also
an integer classifier, after we multiply its weights by a suf-
ficiently large constant. However, a classifier with high-
precision weights may become difficult to compile.

Theorem 2 further implies that if we can train an integer
classifier with bounded aggregate weight, then we can train
a classifier that has an OBDD whose size is bounded by the
budget and number of variables, which we consider next.

3 On Training a Compilable Classifier
We next consider the problem of learning an integer classi-
fier with bounded aggregate weight. We refer to such a clas-
sifier as weight-budgeted if we assert a budget B on its ag-
gregate weight. By Theorem 2, a weight-budgeted classifier
can be compiled to an OBDD in time linear in the budget.
Definition 3 (Weight-Budgeted Linear Classifier). We call
an integer linear classifier a weight-budgeted one iff its ag-
gregate weight is less than or equal to a given budget B.

Consider the problem of training a linear classifier from
data. Say we have a dataset D = {(xi, yi)}Ni=1 consisting of
examples xi with labels yi. For the purposes of training, we
can assume a more neuron-like representation of the form
g(x) = σ(wTx + b) where x is the input vector, w is the
weight vector and b is a bias (or negative threshold). As
discussed in Section 2, σ can be a sigmoid activation during
training, and a step activation during testing. We can then
learn the weights w and bias b by minimizing the mean-
squared-error (MSE):

1

N

N∑
i=1

(yi − g(xi))
2
.

Typically, when a linear classifier is trained in this manner,
it is also referred to as a logistic regression classifier.

This learning problem is a convex optimization problem,
and is typically solved using gradient descent. However, in
an integer linear classifier, the weights are constrained to be
integers, and hence, minimizing the squared-error becomes
a combinatorial optimization problem. Further, when we as-
sert an upper-bound on the aggregate weight, the problem
appears to become intractable in general.
Theorem 3. Given a dataset D, training a weight-budgeted
linear classifier with minimum MSE is an NP-hard problem.

A proof appears in the Appendix. Note that neither (1) con-
straining the weights to be integers, nor (2) constraining
their aggregate weight to be bounded, makes training a lin-
ear classifier NP-hard by themselves; it is their combination.

4 A Pseudo-Polynomial Time Algorithm
The computational hardness of Theorem 3 depends on the
linear classifier being trained discriminatively, i.e., by min-
imizing mean-squared-error. That is, the model is being
trained so that it optimizes its accuracy when classifying the
training set. Alternatively, we may train a classifier genera-
tively, where the model is being trained to fit the underlying
probability distribution from where the dataset came from.

In this section, we show that if we train a linear classi-
fier generatively, then the optimal classifier can be found
in pseudo-polynomial time. That is, the optimal classifier
may be found in time that is polynomial in the size of the
input (the number of features n) and on the magnitude of
the budget B.2 We proceed as follows. First, we explain
how we formulate a linear classifier in generative terms (as
a naive Bayes classifier), and explicate the assumptions im-
plied by such a classifier. We next show that the maximum-
likelihood parameters for this classifier can be found in
closed-form. We then present our pseudo-polynomial time
algorithm for the maximum-likelihood parameters, subject
to the constraint that the weights are integer and bounded.
Definition 4 (Generative Linear Classifier). We call a linear
classifier a generative one iff its weight and threshold have
been trained via maximum likelihood (ML).

Again, a linear classifier that is trained discriminatively is
typically referred to as logistic regression. A linear classifier
that is trained generatively is typically referred to as naive
Bayes. That is, naive Bayes and logistic regression clas-
sifiers can be viewed as having the same functional form,
but whose parameters are obtained using different methods,
e.g., by optimizing the log likelihood in the generative case,
and by optimizing the conditional log likelihood (or, alter-
natively, the mean-squared-error) in the discriminative case;
see, e.g., (Ng and Jordan 2001; Elkan 1997).

A naive Bayes classifier, in contrast to logistic regression,
represents a joint distribution Pr(X, Y), where the variables
X represent the features of the classifier, and variable Y rep-
resents the class label. The induced joint distribution is:

Pr(X, Y) = Pr(Y)
∏
X∈X

Pr(X | Y).

where Pr(Y) is the prior class distribution, and Pr(X | Y)
are the conditional feature-given-class distributions. A lin-
ear classifier, as defined in Definition 1, can be represented
as a naive Bayes classifier, as follows.
Proposition 2. If f is a linear classifier with weights wX

for each X ∈ X and a threshold T, then the corresponding
naive Bayes classifier has the parameters:

Pr(Y) = σ(−T)

Pr(X=+1 | Y =1) = Pr(X=−1 | Y =0) = σ(wX)

where σ(z) = (1 + exp{−z})−1 and where

log
Pr(Y =1 | x)
Pr(Y =0 | x)

= −T +
∑
x∈x

wX · x.

A proof appears in the Appendix. First, observe that the
naive Bayes classifier’s parameters are functions of the orig-
inal linear classifier’s parameters. The class probabilities

Pr(Y) = σ(−T) = σ(b),

2It is only pseudo-polynomial because it is polynomial in the
budget, but not on the number of bits needed to represent the bud-
get. Equivalently, it is polynomial in the size of a unary (but not
binary) representation of the budget.

depend on the negated threshold −T, and the corresponding
bias b. Each conditional probability table Pr(X | Y) de-
pends on the corresponding weight wX for feature X from
the linear classifier, where the true-positive rate is equal to
the true-negative rate:3

Pr(X=+1 | Y =1) = Pr(X=−1 | Y =0) = σ(wX).

We also have the false-positive and false-negative rates:

Pr(X=+1 | Y =0) = Pr(X=−1 | Y =1) = σ(−wX)

since σ(−x) = 1− σ(x). The output of the linear classifier
f is obtained by thresholding the log-odds log Pr(Y=1|x)

Pr(Y=0 | x) .
This corresponds to the decision rule of a naive Bayes
classifier, where we label a feature vector x positively if
Pr(Y =1 | x) ≥ Pr(Y =0 | x) and 0 otherwise. That
is, the naive Bayes classifier of Proposition 2 labels a fea-
ture vector positively iff the corresponding linear classifier
of Definition 1 labels it positively.

The ML parameters of a linear classifier can be obtained
in closed form, by viewing it as a naive Bayes classifier. As
in Definition 4, we call the resulting classifier a generative
linear classifier. Let D = {(xi, yi)}Ni=1 denote a dataset of
N examples, where the i-th example has feature vector xi

and label yi. Let D#(Y =1) and D#(Y =0) denote the
number of times that class Y appears positively and neg-
atively, respectively. Let D#(Y =X) denote the number
of times that class Y and feature X have the same sign in
dataset D. Let D#(Y ̸=X) denote the number of times
where their signs are not equal. Note that

D#(Y =X) +D#(Y ̸=X) = N.

We can express the log-likelihood as:

LL(D) =

N∑
i=1

logPr(xi, yi)

= D#(Y =1) log σ(b) +D#(Y =0) log σ(−b)+∑
X∈X

D#(Y =X) log σ(wX) +D#(Y ̸=X) log σ(−wX)

yielding the following closed-form for the ML parameters.
Proposition 3. Given a dataset D, a generative linear clas-
sifier has the maximum likelihood parameters:

b = log
D#(Y =1)

D#(Y =0)
and wX = log

D#(Y =X)

D#(Y ̸=X)

for each feature variable X .
These closed-forms can be derived by setting to zero the

partial derivatives of the log-likelihood with respect to the
parameters, and then solving for the parameters.

Suppose now that we want to constrain the weights to be
(1) integers and (2) bounded, as in a weight-budgeted linear
classifier. Maximizing the likelihood is now a combinatorial

3Although we assume Y ∈ {0, 1} and X ∈ {−1,+1}, we
interpret both -1 and 0 as being “false” or “negative,” and +1 and 1
are both “true” or “positive.” We say Y =X if Y and X are both
positive, or both negative. We say Y ̸=X if their signs differ.

search problem. Say we want to learn integer weights wX

and an integer bias b where the aggregate weight must be
exactly a given budget B.4 That is, we think of B as a set of
(integer) units that we must allocate across all weights, while
maximizing the log likelihood. We can solve this problem
optimally using dynamic programming (DP), as follows.

Suppose that the features X are ordered (i.e., X1, X2, . . .)
and let LL[n,B] denote the log-likelihood of the data with
respect to the first n features Xn where we use exactly the
budget B. Note that if we allocate b units of the budget
B to the last feature Xn, then the remaining B − b units
must be allocated to the remaining features Xn−1 = Xn \
Xn. Since the log-likelihood decomposes according to the
features, we can independently find the optimal weights for
(1) the last feature Xn which is either w = b or w = −b, and
for (2) the remaining n−1 features Xn−1, which we can find
recursively. If we consider all possible ways of allocating B
units between Xn and Xn−1, we obtain the recurrence:

LL[n,B] = max
b∈{0,...,B}

LLXn
[b] + LL[n− 1, B − b]

LL[0, B] = LLY [B]

where LLX [b] optimizes the weight for feature X:

max
w∈{b,−b}

D#(Y =X) log σ(w) +D#(Y ̸=X) log σ(−w)

and where LLY [b] optimizes the weight for class Y :

max
w∈{b,−b}

D#(Y =1) log σ(w) +D#(Y =0) log σ(−w).

While evaluating the recurrence, we may encounter identi-
cal sub-problems LL[n,B] multiple times. By caching the
results, we obtain a dynamic programming algorithm that
runs in time polynomial in n and B, and hence in overall
pseudo-polynomial time (because we are polynomial in B,
not in the number of bits needed to represent B).

Theorem 4. The maximum likelihood estimates of a weight-
budgeted linear classifier over n features X using a budget
of exactly B can be computed in O(nB2) time.

This complexity is obtained by observing that the table
LL[., .] has size O(nB), and each of its cells can be filled in
O(B) time, by scanning the row above it. Again, to find the
optimal weights within (and not just equal to) a given bud-
get B, after populating the table, we scan the row of values
LL[n, .] and select the solution with maximum likelihood.

4.1 An Example
Consider a dataset D over two features X1 and X2 and class
Y , with the following sufficient statistics:

D#(Y =1) = 25 D#(Y =0) = 75
D#(Y =X1) = 66 D#(Y ̸=X1) = 34
D#(Y =X2) = 90 D#(Y ̸=X2) = 10

Our DP algorithm populates the table LL[n,B] of optimal
likelihoods where the full budget B was used:

4This simplifies the discussion. To find the best weights within
a given budget B, we simply examine all solutions from 0 to B.

n\B 0 1 2 3 4 5
0 (b) −69 −56 −62 −79 −101 −125

1 (w1) −138 −125 −121 −128 −143 −160
2 (w2) −207 −179 −166 −158 −154 −156

The last row LL[n, .] corresponds to solutions over all n fea-
tures. Hence, the optimal solution is found by considering
all possible budgets B, which is cell LL[2, 4], given in bold.
Below, is a corresponding table giving the optimal parameter
vector (b, w1, w2) for each cell LL[n,B]:

n\B 0 1 2 3 4 5
0 (b) 0, 0, 0 −1, 0, 0 −2, 0, 0 −3, 0, 0 −4, 0, 0 −5, 0, 0

1 (w1) 0, 0, 0 −1, 0, 0 −1, 1, 0 −2, 1, 0 −2, 2, 0 −3, 2, 0
2 (w2) 0, 0, 0 0, 0, 1 −1, 0, 1 −1, 0, 2 −1, 1, 2 −1, 1, 3

Consider, for example, how to populate cell LL[1, 2], where
we want to find the ML parameters for b and w1 given a
budget B = 2, where we take the maximum out of 3 choices:

1. LLX1
[0] + LL[0, 2] = −69− 62 = −131

2. LLX1
[1] + LL[0, 1] = max{−65,−97} − 56 = −121

3. LLX1
[2] + LL[0, 0] = max{−80,−144} − 69 = −149

The maximum (in bold) allocates one unit to feature X1 and
combines it with the solution from LL[0, 1]. In this example,
we can calculate LLX1

[1] as the log likelihood of the feature
X1 given that wX1

= 1, via:

D#(Y =X1) log σ(wX1
) +D#(Y ̸=X1) log σ(−wX1

)

= 66 log(.731) + 34 log(.269) = −65

and similarly compute -97 if wX1
= −1.

4.2 Improvements
Up to this point, we have considered integer weights wX ;
however, this leads to a limited domain of realizable proba-
bilities Pr(Y =+1 | X=+1) = σ(wX). For example, for
a budget of B = 3, we have the possibilities:

wX -3 -2 -1 0 1 2 3
σ(wX) 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

In general, if we have a budget B, the set of weights is con-
fined to {−B, . . . , 0, . . . , B} = {−i, i}Bi=0. We can expand
the set of weights, and the corresponding set of realizable
probabilities, by assuming fractional weights. In particular,
we assume an (inverse) step-size k and assume instead that
we have weights from the set {− i

k ,
i
k}

kB
i=0. For example, a

weight 3
2 can now represent the value σ(32) = 62.2%. With

a large enough budget B and step-size k, we can represent
any (rational) probability value. Further, the time complex-
ity of our DP algorithm in Theorem 4 becomes O(n(kB)2).

Note that the relative scale of the parameters b and wX de-
termine the probabilities σ(b) and σ(wX) that are realizable,
and hence our ability to fit a given distribution. The scale of
the parameters, however, do not effect the decision function
of the resulting classifier (we can always multiply both sides
of a classifier by a constant, in Definition 1). Further, the
scale does not effect the resulting OBDD. Hence, for com-
piling a linear classifier into an OBDD, as in Theorem 2,
using a step size k amounts to multiplying all weights (and
the budget B) by k (to restore the integrality of the weights).

Finally, the conventional wisdom is that discriminative
classifiers tend to outperform generative classifiers;5 c.f.,
(Ng and Jordan 2001). The DP algorithm that we just pro-
posed learns a generative classifier that maximizes the log-
likelihood of the data. We can apply this same algorithm
to learn a discriminative classifier based on the following.
First, finding a maximum likelihood weight-vector w can be
viewed as minimizing the KL-divergence between the data
distribution PrD and the distribution Prw induced by w:6

max
w

LL(D;w) = min
w

KL(PrD,Prw).

Logistic regression is typically viewed as learning the con-
ditional distribution Pr(Y | X). We can also view it as
inducing a joint distribution Pr(X, Y), when we treat its
weights ŵ as the parameters of a generative linear classi-
fier, as in Definition 4. Hence, instead of using our DP
algorithm to fit a dataset D, we use it to fit the (sufficient
statistics) of the distribution Pr ŵ induced by a discrimina-
tive classifier’s weights ŵ. Hence, to learn a discriminative
weight-budgeted classifier using our DP algorithm, we can
first learn a discriminative linear classifier from data, and
then fit a weight-budgeted classifier to its induced distribu-
tion, using our DP algorithm. This approach can also be
viewed as a more principled way of approximating a linear
classifier by an integer one, based on minimizing the KL-
divergence between the two classifiers. This approach can
also be applied to compiling a neural network to an OBDD,
as in (Shi et al. 2020), based on the following steps: (1) train
a neural network from data, (2) approximate its neurons with
weight-budged classifiers, (3) compile the resulting neurons
to OBDD, and (4) aggregate the OBDDs of the neurons into
a single OBDD for the neural network. In the next section,
we show empirically how our approach can obtain more ac-
curate neurons with more compact OBDDs.

5 Experiments
We next empirically evaluate the pseudo-polynomial time
training algorithm that we just proposed in Section 4 for
learning a weight-budgeted classifier. We first evaluate the
impact that the budget has on the quality of the resulting
weight-budgeted classifier learned from data. We next eval-
uate the ability of a weight-budgeted classifier in fitting to
a discriminative model, such as a logistic regression. Then,
we explore the trade-off that our approach provides in trad-
ing off classifier fidelity and the compactness of the classi-
fier’s representation as an OBDD, which ultimately provides
the ability to formally explain and verify its own behavior.

In our experiments, we use the MNIST dataset of hand-
written digits, consisting of 28× 28 pixel images, which we
binarized to black-and-white. We consider one-versus-one
classification of digits, so that we restrict ourselves to bi-
nary classification. Hence, the classifiers that we learn cor-
respond to Boolean functions with 784 binary inputs and a

5A discriminative classifier typically estimates the posterior
Pr(Y | X) whereas a generative classifier typically estimates the
joint distribution Pr(X, Y). The latter includes the former as a
special case; hence the discriminative classifier can be viewed as
more specialized to the classification task.

6A dataset D induces a data distribution PrD(x) = 1
N
D#(x).

25 50 75 100 125 150
Budget

−544.00

−543.75

−543.50

−543.25

−543.00

−542.75

−542.50

−542.25

−542.00

Av
g

LL

1
2
4
6
8
10
Generative

Figure 2: Budget versus Log Likelihood, Generative Classifier

20 40 60 80 100 120 140
Budget

0.70

0.75

0.80

0.85

Ac
cu
ra
cy

1
2
4
6
8
10
Generative

Figure 3: Budget versus Accuracy, Generative Classifier

single binary output. There are in total
(
10
2

)
= 45 different

pairs (i, j) of digits. Each plot that we present in this section
is an average over all 45 pairs of digits.

5.1 Budget versus Quality

In a weight-budgeted classifier, an increasing budget admits
a higher-performance model. Given enough of a budget, we
can approach the performance of a generative linear classi-
fier that was not constrained to have integer weights (from
Theorem 1, such a classifier may not admit a compact rep-
resentation as an OBDD). In particular, given a budget B
and step-size k, the weights of the classifiers that we learn
are drawn from the set {− i

k ,
i
k}

kB
i=0 of possible weights. A

larger budget B and a larger step-size k provide a finer gran-
ularity to the model, allowing for greater preciseness.

A generative linear classifier assumes a true-positive rate
equal to the true-negative rate, as in Section 4. Hence,
the data was re-scaled prior to binarization to better fit this

20 40 60 80 100 120 140
Weight Budget

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
Ac

cu
ra

cy

Avg for logistic regression
2
3
4
5

Figure 4: Budget versus Accuracy, Discriminative Classifier

assumption.7 In our experiments, we learned weighted-
budgeted classifiers using the dynamic programming (DP)
algorithm from Section 4. We compared these classifiers
with the (unconstrained) generative linear classifier, whose
parameters were learned in closed form using Proposition 3.

Consider Figure 2, where we increase on the x-axis the
budget B available to the learning algorithm, and evaluate
on the y-axis the resulting (test set) log likelihood (bigger is
better). Each solid line also shows the effect of increasing
the step-size k, from 1 to 10. The dashed line shows the per-
formance of the generative linear classifier that was not con-
strained to using integer weights. First, as we increase the
available budget B the log likelihood also increases. Sec-
ond, we see that as we increase the step-size k the log likeli-
hood also increases, and approaches the log likelihood of the
(unconstrained) generative classifier, as expected. In fact,
given sufficient step size k and budget B, we come arbitrar-
ily close to the unconstrained classifier. Figure 3 illustrates
a similar story, where we evaluate the quality of a classifier
by (test set) accuracy rather than by log likelihood.

5.2 Fitting to a Discriminative Classifier
By viewing a (discriminative) linear classifier as induc-
ing a joint (rather than a conditional) distribution, we can
first train a discriminative classifier, and then fit a weight-
budgeted classifier to it, as in Section 4.2. We may pre-
fer this when the modeling assumptions of a generative lin-
ear classifier do not hold in the data, and allows us to ap-
proximate what is often a higher performing model. This
approach can be also be used to learn a classifier (with a

7Each pixel was originally a grayscale value from 0 to 1. For
each pixel, we found the mean value of the pixel for the positive
instances, and its mean value for its negative instances. We took
the middle-point of these means as the threshold for binarizing
the pixel value. Some pixels were always 0 in the dataset, which
implies a true-negative rate of 1 but a true-positive rate of 0. By
adding random noise to each pixel, the true-negative/positive rate
of such pixels become closer to 1

2
, hence we added random noise

to all pixels so that the dataset better fits the modeling assumptions.

10
2

10
3

10
4

10
5

10
6

obdd size

90

92

94

96

98

ac
cu

ra
cy

dp
int
float

Figure 5: OBDD Size vs Accuracy

step-activation) with a compact OBDD: we first train a dis-
criminative linear classifier from data, and then fit a weight-
budgeted classifier to it.

Here, we trained a discriminative linear classifier for
each pair (i, j) of digits, using a LogisticRegression
model in the scikit-learn library.8 We subsequently fit
a weight-budgeted classifier to each, using our dynamic pro-
gramming algorithm, as described in Section 4.2. Consider
Figure 4, where we again increase on the x-axis the budget
B available, and evaluate on the y-axis the resulting test-set
accuracy. Each solid line increases the step-size k, from 2
to 5. The dashed line shows the accuracy of the original lo-
gistic regression models that we trained. Again, we see that
the accuracy improves as we increase the budget, and that
the performance approaches the original logistic regression
model as the step-size k is increased, as expected. As shown,
neither the step-size or budget need to be significantly high
to have a close approximation to the original discriminative
model, but we can continue to push them arbitrarily close.

5.3 Compiling Linear Classifiers to OBDDs
In our last set of experiments, we took the weight-budgeted
classifiers fit to logistic regression models in the previous ex-
periments, and compiled them to OBDDs. We evaluate the
ability of our dynamic programming algorithm in learning
higher quality linear classifiers with more compact OBDDs.

Figure 5 highlights the results, where we compare the re-
sulting OBDD size (x-axis) and accuracy of the classifier
(y-axis). The black solid line represents the results of our
dynamic programming (dp) algorithm. Each point repre-
sents a different level of step-size of k from 2 to 7. As
we increase the level of step-size k, we find that OBDD
size increases along with accuracy, as expected. A larger
step-size corresponds to a higher budget used: a higher bud-
get increases the quality (accuracy) of the classifier, but
also yields a looser upper-bound on the size of the result-

8We assumed an L1 penalty, inverse regularization strength
C = 0.1, tolerance 10−6, and used the liblinear solver.

(a) Classified as 4 (b) Classified as 9

Figure 6: The red and green pixels denote the PI-explanation. Red
(and green) pixels were originally white (and black); all other pix-
els are irrelevant to the classifier’s decision.

0 25 50 75 100 125 150 175
epsilon

0

20

40

60

80

100

pe
rc

en
t c

ov
er

ag
e

digits (4,9)

Figure 7: Percentage of all input settings which are within some ϵ
of the decision boundary

ing OBDD. The red dashed-line plots the accuracy of the
original classifier learned with floating-point weights, and
we see that as the step-size increases, our DP algorithm ap-
proaches the accuracy of the original classifier. Finally, con-
sider the blue dotted line. Here, we have taken the orig-
inal classifier, truncated its weights to integers, and com-
piled the result to an OBDD; this is the approach taken
by (Shi et al. 2020) to compile neurons to OBDD.9 Here,
we have multiplied all weights by increasingly larger fac-
tors {4, 8, 16, 32, 64, 128}. A larger scaling factor used pre-
serves more precision when we truncate the weights. Again,
we see that larger scaling factors yield classifiers with accu-
racies approaching the original classifier, along with larger
OBDDs. Finally, when we compare the solid black line (dp)
with the dotted blue line (casting to integer), we find that our
dynamic programming algorithm can train linear classifiers
that obtain better accuracies than by casting to integer, while
also yielding much smaller OBDDs.

6 Explaining the Behavior of a Classifier
We next provide a case study on explaining and verifying the
behavior of a linear classifier. A LogisticRegression
classifier was trained, then fit to a weight-budgeted classifier
(as in Section 5.2) to classify images of 4’s and 9’s. We
learned a classifier with a step-size k=2 and a sufficient
weight budget to achieve its maximum likelihood estimates.
Finally, we compiled the linear classifier to an OBDD, which
we used to provide PI-explanations of its predictions (Shih,
Choi, and Darwiche 2018b; Darwiche and Hirth 2020).

Figure 6 depicts two PI-explanations for correctly clas-
sified images of a 4 and a 9. A PI-explanation is a sub-
instantiation of a feature vector (a sub-image in this case),
which is sufficient to determine the output of the classifier.
For instance, in Figure 6a, the PI-explanation corresponds
to the red and green pixels. The red (originally white) pix-
els may be used to find the sharper angles typically present
in a 4. The green (originally black) pixels are mostly con-
centrated at the top of the number, where a 9 would usually
connect, but where a 4 would not. These pixels being set
to these values is sufficient for classifying this image as a
4: the other pixels in the image become irrelevant for the
classifier to make its determination. Figure 6b depicts a PI-
explanation for why the classifier labeled a given image as
a 9. In contrast to the PI-explanation for the 4, we look for
white pixels at the top of the image, where a 4 ordinarily
would not connect. We also look for white pixels low in the
number and at an angle, where sometimes the bottom of a
9 may hook from right to left. The PI-explanations further
provide insight into a linear classifier’s behavior: it did not
learn conceptually what a digit is. Instead, it appears to be
finding simple patterns in the training set that allows it to
achieve a high accuracy (Shi et al. 2020).

We remark that similar observations can be made about
PI-explanations for other pairs of digits. We highlighted an
example from 4-vs.-9, as it represented one of the more chal-
lenging digit pairs (by test set accuracy). Further, we note
that for linear classifiers, the shortest PI-explanation can be
computed in polynomial time (Marques-Silva et al. 2020).

As discussed in Section 2, it is NP-complete to determine
if any input will fall within a given ϵ of a linear classifier’s
decision boundary. However, if we have a weight-budgeted
linear classifier, these types of analyses can be performed in
polynomial time, via compilation to OBDD.10 Such analyses
may be useful when evaluating the robustness of a classifier
to adversarial examples, which are often close to the deci-
sion boundary. Consider Figure 7, where we have taken the
same 4-vs.-9 classifier, where on the x-axis we range values
of ϵ from 0 to the aggregate weight W = 179 of the classi-
fier. On the y-axis we plot the percentage of all of the 2784

possible input settings that fall within this value of ϵ. First,
we observe that no input setting fall exactly on the decision

9Available at https://github.com/art-ai/nnf2sdd.
10We can modify the algorithm from (Shi et al. 2020, Appendix)

for compiling a neuron into an OBDD. In the algorithm, each ter-
minal node corresponds to a threshold value, and is set to true if it
is ≥ 0 and false otherwise. Instead, we set a terminal node to true
if its absolute threshold value is ≤ ϵ.

https://github.com/art-ai/nnf2sdd

boundary.11 As we increase ϵ, a larger percentage of the in-
put space falls within ϵ of the decision boundary, until we
capture the entire input space when ϵ = W . Over all pos-
sible input settings, we compute the average distance from
the decision boundary for this classifier to be 13.35. Over all
pairs of digits, the lowest average distance was 8.58 for digit
pair (6, 7) while the highest was 17.35 for digit pair (1, 8).

7 Conclusion
We proposed an approach for training a linear classifer from
data, which guarantees a compact representation when com-
piled to an OBDD. Our approach is based on observing that
(1) a linear classifier can be compiled to an OBDD effi-
ciently, if its weights are bounded integers, and (2) we can
learn a linear classifier with bounded and integer weights.
In the latter case, we show that it is NP-hard to learn such
a classifier discriminatively, but it is possible to learn such
a classifier generatively, in pseudo-polynomial time via dy-
namic programming. We provide a more principled ap-
proach, based on maximum likelihood estimation, to prior
approaches that would first train a linear classifier (or a neu-
ron) from data, and then truncate its weights until it can be
compiled to an OBDD. Empirically, our approach produces
more accurate classifiers with more compact OBDD repre-
sentations. Our results have implications in eXplainble Arti-
ficial Intelligence (XAI): they represent a step towards train-
ing explainable neural networks directly from data.

A Proofs
Number partitioning is a well-known NP-complete problem.

PARTITION: Given a set of n positive integers A =
{a1, . . . , an}, does there exist a subset A⋆ ⊆ A s.t.∑

a∈A⋆

a =
∑

a∈A\A⋆

a?

Proof of Proposition 1. To show that ϵ-DB is NP-complete,
we show that it is in NP and it is NP-hard. Membership in
NP is trivial. We show how to reduce PARTITION to ϵ-DB.

Our linear classifier has n weights, where wi = ai. Fur-
ther, the threshold is T = 0. Suppose we find an input set-
ting where

∑
i wi · xi = 0, where each xi ∈ {−1,+1}. The

inputs set to +1 form a subset A⋆, and the inputs set to -1
form the complement A\A⋆. To sum to 0, each subset must
each sum to the same value.

X3C is an NP-complete problem (Garey and Johnson 1979).

EXACT COVER BY 3-SETS (X3C): Given a set
X containing 3n elements, and a collection C of 3-
element subsets of X, does there exist an exact cover
of X, i.e., is there a subset C′ ⊆ C where every ele-
ment of X appears in exactly one element of C′?

11Since each input X ∈ {−1, 1}, the parity of wTx does not
change. In this case, this parity of wTx differed from the parity of
the threshold, and hence they can never match.

Proof of Theorem 3. Consider an X3C problem with |X| =
3n and n ≥ 2, and with |C| = m. We reduce X3C to min-
imizing the MSE of a dataset for a weight-budgeted linear
classifier. We assume non-positive weights. We construct a
dataset {(xi, yi)}6ni=1 where each data example xi is a vector
(xi1, . . . , xim) over m features. The dataset has two halves:

• The first 3n data examples have features xij=1 if the i-
th element of X is present in the j-th element of C, and
xij=−1 otherwise. Further, we have labels yi=1.

• The last 3n data examples have features xij=1. Further,
we have labels yi=0.

Assume we have a budget B=n that we must allocate across
the weights w1, . . . , wm and bias b. We want to show that
an allocation minimizes the MSE iff it is an exact cover of
the original X3C problem. In particular, wj=−1 if the j-
th element of C is part of the cover, and wj=0 otherwise.
Further, b=0.

Each term of the MSE has the form [yi − σ(wTxi + b)]2.
In the first 3n terms of the MSE, we have the more specific
form [1− σ(W+

i −W−
i + b)]2 where

W+
i =

∑
j:xij=1

wj W−
i =

∑
j:xij=−1

wj

The last 3n terms of the MSE have the common form
[0 − σ(W + b)]2 where W =

∑
j wj . Note that decreas-

ing a feature’s weight wj will increase the error in 3 terms
and decrease the error in 6n − 3 terms. Further, increasing
the bias b decreases the error in the first 3n terms, and in-
creases the error in the last 3n terms. Analogously, if we
decrease the bias. Hence, for n ≥ 2, if we allocate a unit
of weight, we prefer to allocate it to a feature (negatively),
rather than allocate it to the bias. Hence, b = 0 when the
MSE is minimized.

Next, we show that to minimize the MSE, exactly one
(negative) unit of weight is allocated to each feature of an
exact cover. In this case, each of the first 3n terms has
W+ = −1 and W− = −(n− 1) and error (1−σ(n− 2))2.
Further, each of the last 3n terms has the error (0−σ(−n))2.
We make use of the following Lemma.

Lemma 1. Suppose we have a partial allocation that covers
an element of X more than once by elements of C. That
is, |W+

i | > 1 for some xi. There exists another partial
allocation using the same total weight, with lower MSE, and
where |W+

i | ≤ 1 for all xi.

Proof. Since our budget is B=n, if one element i of X is
covered more than once, then there is another element j of X
that is uncovered. Suppose that k units have been allocated
so far, and that m > 1 units were allocated to i and no units
were allocated to j, i.e., |W+

i | = m and W+
j = 0. The i-th

and j-th term of the MSE is thus:

[1− σ(k − 2m)]2 + [1− σ(k)]2.

We show that re-allocating one unit of weight from i to j
will result in a lower error:

[1− σ(k − 2m+ 2)]2 + [1− σ(k − 2)]2.

Once we show this, we can iteratively re-allocate weights
from covered elements to uncovered elements, until we ob-
tain a partial allocation where elements are covered at most
once, and further with lower MSE. (A subset of k elements
from an exact cover would be such a partial allocation).

Since 1− σ(x) = σ(−x) it suffices to show that

σ(−k+2m)2+σ(−k)2 > σ(−k+2m−2)2+σ(−k+2)2

or equivalently, we show that

σ(−k+2m)2−σ(−k+2m−2)2 > σ(−k+2)2−σ(−k)2.

First, note that if a < b < c < d and d − c > b − a then
d2− c2 > b2− a2. This follows from the fact that d2− c2 is
the difference in area between two squares of widths c and
d, which is greater than the difference in area b2 − a2 of two
smaller squares with a smaller difference between widths a
and b. Noting that

σ(−k) < σ(−k + 2) < σ(−k + 2m− 2) < σ(−k + 2m)

it now suffices to show that

σ(−k + 2m)− σ(−k + 2m− 2) > σ(−k + 2)− σ(−k).

For m ∈ [2, k), the left-hand side ranges from

σ(−k + 4)− σ(−k + 2)

when m = 2 to

σ(k − 2)− σ(k − 4)

when m = k−1. In any range [−z, z], the sigmoid function
σ increases slowest at the endpoints. Thus, since the gradi-
ent is always steeper between σ(−k+2) and σ(k−2), the in-
equality holds (the differences are equal when m = k).

Assume, for contradiction, that the MSE solution does not
form a perfect cover. We consider three cases.

Case 1: the solution does not use the full budget. Say the
solution has allocated 1 ≤ k < n units of weight (if k = 0,
then adding one negative unit of weight to any feature de-
creases the error). By Lemma 1, we can assume that the
solution is a partial allocation where each element of X is
covered at most once. Further, we can assume that it is a
subset of an exact cover (which would have the same MSE).
In this case, there exists a feature j in C whose elements of
X are not yet covered. Suppose that we allocate one (neg-
ative) unit of weight to this feature. 3 terms of the MSE,
those covered by feature j, would increase from [1− σ(k)]2

to [1−σ(k−1)]2. The other 6n−3 terms of the MSE would
decrease, either from [1− σ(k− 2)]2 to [1− σ(k− 1)]2 if it
was already covered, or from [1−σ(k)]2 to [1−σ(k+1)]2 if
it was not yet covered. Since the gradient of σ(x) becomes
smaller as x is further from 0, we have

[1−σ(k−1)]2−[1−σ(k)]2 ≤ [1−σ(k−2)]2−[1−σ(k−1)]2

and the increase in error from the 3 newly covered features
(left-hand-side) is outweighted by the decrease in error by at
least 3 of the previously covered features (right-hand-side).
Hence, we could improve the solution by allocating an addi-
tional unit of weight.

Case 2: the solution uses the full budget, but allocates
more than one unit of weight to a single feature. If a feature
is allocated more than one unit of weight, then each ele-
ment of X that the feature covers, is covered multiple times.
By Lemma 1, an allocation that assigns at most one unit of
weight to each feature (i.e., an exact cover) would result in
a lower MSE.

Case 3: the solution distributes one unit weight to each of
n features, but it does not correspond to a perfect cover. In
this case, there is some uncovered element of X, and also,
there is some element of X that is covered more than once.
By Lemma 1, an allocation that covers each element of X
once (i.e., an exact cover) would result in a lower MSE.

Proof of Proposition 2. To simplify the proof, we assume
Y ∈ {−1,+1} rather than Y ∈ {0, 1}, where Y =0 and
Y =−1 are both equivalent to Y being “false” or “negative.”

First, assuming Pr(Y =+1) = σ(b) we have

Pr(Y =−1) = 1− 1

1 + exp{−b}
=

1

1 + exp{b}
Similarly, assuming Pr(Xa=±1 | Y =±1) = σ(wX):

Pr(Xa=±1 | Y =∓1) =
exp{−waxa}

1 + exp{−waxa}

=
1

1 + exp{waxa}
.

Thus,

Pr(Xa | Y =+1) =
1

1 + exp{−waxa}

Pr(Xa | Y =−1) =
1

1 + exp{waxa}
since in the first case we want the exponent to differ from
Xa and in the second case we want them to match. Thus

log
Pr(Y =+1 | x)
Pr(Y =−1 | x)

= log
Pr(Y =+1)Pr(x | Y =+1)

Pr(Y =−1)Pr(x | Y =−1)

= log(
1

1 + exp{−b}
÷ exp{−b}

1 + exp{−b}
)

·
n∏

i=1

(
1

1 + exp{−wixi}
÷ exp{−wixi}

1 + exp{−wixi}
)

= log exp{b} ·
n∏

i=1

exp{wixi} = b+

n∑
i=1

wixi

as desired.

References
Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
tractable XAI queries based on compiled representations. In
Proceedings of the 17th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR).
Baehrens, D.; Schroeter, T.; Harmeling, S.; Kawanabe, M.;
Hansen, K.; and Müller, K. 2010. How to explain individ-
ual classification decisions. Journal of Machine Learning
Research (JMLR) 11:1803–1831.

Cadoli, M., and Donini, F. M. 1997. A survey on knowledge
compilation. AI Commun. 10(3-4):137–150.
Chan, H., and Darwiche, A. 2003. Reasoning about
Bayesian network classifiers. In Proceedings of the Nine-
teenth Conference on Uncertainty in Artificial Intelligence
(UAI), 107–115.
Chubarian, K., and Turan, G. 2020. Interpretability of
bayesian network classifiers: Obdd approximation and poly-
nomial threshold functions. In International Symposium on
Artificial Intelligence and Mathematics (ISAIM).
Cooper, M. C., and Marques-Silva, J. 2021. On the tractabil-
ity of explaining decisions of classifiers. In 27th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP), volume 210, 21:1–21:18.
Darwiche, A., and Hirth, A. 2020. On the reasons behind
decisions. In Proceedings of the 24th European Conference
on Artificial Intelligence (ECAI).
Darwiche, A., and Marquis, P. 2002. A knowledge compila-
tion map. Journal of Artificial Intelligence Research (JAIR)
17:229–264.
Elkan, C. 1997. Boosting and naive Bayesian learning.
Technical Report CS97-557, Department of Computer Sci-
ence and Engineering, University of California, San Diego.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Advances in
Neural Information Processing Systems (NIPS), 4107–4115.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019.
On relating explanations and adversarial examples. In
Advances in Neural Information Processing Systems 32
(NeurIPS), 15857–15867.
Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In Computer Aided Verifi-
cation (CAV), 97–117.
Leofante, F.; Narodytska, N.; Pulina, L.; and Tacchella, A.
2018. Automated verification of neural networks: Advances,
challenges and perspectives. CoRR abs/1805.09938.
Lipton, Z. C. 2018. The mythos of model interpretability.
Commun. ACM 61(10):36–43.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2020. Explaining naive Bayes
and other linear classifiers with polynomial time and delay.
In Advances in Neural Information Processing Systems 33
(NeurIPS).
Narodytska, N.; Kasiviswanathan, S. P.; Ryzhyk, L.; Sagiv,
M.; and Walsh, T. 2018. Verifying properties of binarized
deep neural networks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI).
Ng, A. Y., and Jordan, M. I. 2001. On discriminative vs.
generative classifiers: A comparison of logistic regression
and naive Bayes. In Advances in Neural Information Pro-
cessing Systems 14 (NIPS), 841–848.

Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. XNOR-Net: Imagenet classification using binary con-
volutional neural networks. In Proceedings of the 14th Eu-
ropean Conference on Computer Vision (ECCV), 525–542.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”why
should i trust you?”: Explaining the predictions of any clas-
sifier. In Knowledge Discovery and Data Mining (KDD).
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-precision model-agnostic explanations. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial In-
telligence (AAAI).
Selman, B., and Kautz, H. A. 1996. Knowledge compilation
and theory approximation. J. ACM 43(2):193–224.
Shi, W.; Shih, A.; Darwiche, A.; and Choi, A. 2020. On
tractable representations of binary neural networks. In Pro-
ceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning (KR).
Shih, A.; Choi, A.; and Darwiche, A. 2018a. Formal veri-
fication of Bayesian network classifiers. In Proceedings of
the 9th International Conference on Probabilistic Graphical
Models (PGM).
Shih, A.; Choi, A.; and Darwiche, A. 2018b. A symbolic
approach to explaining Bayesian network classifiers. In Pro-
ceedings of the 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI).
Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
Bayesian networks into decision graphs. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence
(AAAI).
Shih, A.; Darwiche, A.; and Choi, A. 2019. Verifying bi-
narized neural networks by Angluin-style learning. In The
22nd International Conference on Theory and Applications
of Satisfiability Testing (SAT).

	Introduction
	Technical Preliminaries
	On Training a Compilable Classifier
	A Pseudo-Polynomial Time Algorithm
	An Example
	Improvements

	Experiments
	Budget versus Quality
	Fitting to a Discriminative Classifier
	Compiling Linear Classifiers to OBDDs

	Explaining the Behavior of a Classifier
	Conclusion
	Proofs

