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Increasingly, there is a growing body of literature supporting the use of machine learning models to advance domain experts’ ability to
predict and change the course of a person’s health behavior. While machine-learned (ML) models can learn to predict human behavior,
these learned ML models are often dubbed “black boxes,” that are overly complex. This complexity impedes domain experts’ model
adoption, primarily due to the difficulty in interpreting, lack of face validity, or lack of concurrence with clinical knowledge. The
result is that a domain expert might either overly rely on or mistrust the model’s decisions. Traditional ML model evaluation metrics
such as accuracy and sensitivity provide an overall metric of model performance, but fall short of providing insights into a model’s
prediction. Recent developments in Explainable ML has produced a generation of explanations (e.g., feature ranking, LIME, SHAPely
values) that are based on approximations. However, advances using Prime Implicants enable us to develop exact explanations (i.e.,
local explanations that are faithful to the behavior of the original model). Although, these generated explanations might help users
gain insight into the inner-workings of a model, it is unknown whether exact explanations improve trust and understanding of ML
models for domain experts. In order to address this research question, we built an interactive tool called PRIMO (Prime Implicant
Maintenance of Outcome) that allows weight management experts to generate exact explanations from an ML model generated to
predict early, the success and failure of a weight-loss intervention. We present a study to evaluate the utility of explainability models
in advancing trust among weight management experts, quantitatively, using a ‘switch-to-agree’ metric (based on the agreement of
the domain-expert with the decisions of the machine learned model) and, qualitatively, through thematic analysis of responses to
open-ended questions about trust and understanding. Our study promotes discussion on the utility of exact explanations in advancing
model adoption, whether exact explanations advance model trust, whether the ‘switch-to-agree’ metric is ideal in capturing increased
trust in model output, and best methods for communicating uncertainty of a models exact explanations. We also provide an end-to-end
framework for the community to further test the effectiveness of computing exact explanations that are faithful to the behavior of the
original model.
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1 INTRODUCTION

Machine-learned (ML) models are used increasingly to understand health care decisions for the purpose of improving
patient outcomes. ML models used to represent complex health behavior data are often black-boxes that are overly
complex; for example, a Random Forest (RF) model—a classifier known for increasing predictive accuracy even without
hyper-parameter tuning, comprising many decision trees where each tree uses a different number of features or variables
to determine a classification—is difficult to understand intuitively. While RF outperforms several other ML methods
in terms of prediction accuracy, it is notoriously hard to interpret [18]. There is an apparent trade-off between the
performance of classifiers (accuracy) and their ability to explain the reasoning behind its results (explainability). Despite
this, researchers have been quick to ride the predictability wave of RFs. Several publications have used RF algorithms
for tasks such as risk prediction [29, 32], emotion detection [22], sign language recognition [25], predicting social
interactions [8], gesture recognition [6], estimating energy prediction [20], and early detection of depression [3].

Machine learned models and explainability tools developed by computer scientists might help users gain insight into
the inner workings of a model, but it is unclear whether health domain experts will agree with predictions provided
by ML models. Visualization and interactive design research have refined methods to convey to domain experts the
reasoning behind the decisions made by ML models. However, recent research has highlighted an over-reliance problem
among clinicians in primary care settings, placing too much trust in automated systems can lead to misuse of a system
where users agree with incorrect system suggestions. Jacobs et al. [12] recently reported that psychiatrists with higher
familiarity with ML were less likely to use an ML recommendation of which antidepressant drug to use compared with
clinicians with lower ML familiarity [12]. Although, the use of model explanations are expected to help mitigate the
issue of over-reliance, since health behavior is often difficult to predict, it is unknown whether there would be lack of
adoption of ML or over-reliance among health behavior experts.

Traditional ML evaluation metrics such as accuracy and sensitivity provide an overall metric of the model’s perfor-
mance but fall short of providing insights into the model’s prediction. Recent developments in the field of explainable
artificial intelligence (AI) have seen new explainability metrics or explanations that provide further understanding about
the reasoning behind the decisions made by an ML model. One such example of an explainability metric, or explanation,
is feature ranking to understand the degree to which features influence a model. Model-agnostic explanations such
as SHAP [16], LIME [23], and ANCHORS [24] are currently the standard approaches to explainability. LIME and
ANCHORS rely on local explanations that are aimed at explaining the model’s reasoning for a given instance (eg, to
answer the question, Why was this instance classified as “X?”); however, these algorithms are based on approximations
by defining the contribution of a feature to the difference between the actual and mean prediction (ie, they are not
accurate explanations). Further, they are not sparse explanations, preferred by humans, and can not be used to make
statements about changes in prediction as input changes. SHAP has a solid foundation in game theory and provides
both consistent global and local explanations; however it is either slow (to generate explanations) and ignores feature
dependence or it produces unintuitive feature attributions [16].

Recent advances in the ability to compile classifiers into decision graphs have enabled the potential to generate what
we call exact explanations, which are explanations that are faithful to the behavior of the original model. Shih et al. and
others [5, 27, 28] designed methods that compile ML models, such as an RF classifier into ordered decision graphs, a
tractable representation, also called ordered binary decision diagrams (OBDDs). OBDD are tractable representations of
a ML model that enable researchers to perform queries, such as computing prime implicants (minimal set of feature
values that are responsible for a decision), on the learned model to facilitate greater understanding. However, it is
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unclear whether these exact explanations will advance model adoption among end users, and whether they will have
an effect on model trust.

Designing an interface where end users, particularly domain experts, can interact with the ML models and its
explanations is essential to building model trust. As shown by Wang et al. [30], co-design with end users provides
the ability to understand, first hand, if a theoretical approach to generating explanations of a certain type, including
the design of the interactive tool to visualize them, will translate well among domain-experts. We use this tractable
representation alongside visualization methods used in prior research to build PRIMO (Prime Implicant Maintenance of
Outcome), a first attempt at building a tool to generate, visualize, and interact with prime implicant–based explanations.

In this paper we discuss how to build a weight-loss prediction model using the Random Forest classifier. We then
discuss PRIMO, a software tool and pipeline for converting an RF model into a tractable representation, providing
exact explanations. We then discuss a study design intended to assess ML model adoption among weight management
experts and to assess the impact of using PRIMO on ML model trust. In doing so we aim to promote discussion on the
utility of exact explanations in advancing model adoption, whether exact explanations advance model trust, optimal
metrics for capturing increased trust in model output, and best methods for communicating uncertainty of a models
exact explanations.

2 BACKGROUND AND RELATEDWORKS

Explainable AI approaches can be grouped based on the type of explanation and the underlying techniques used to
generate those explanations.

2.1 Local and Global Explanations

Local explanations are those aimed at explaining the model’s reasoning for a given instance [17]. Rebeiro et al. [23]
designed model-agnostic local explanation techniques to explain the decisions of any classifier. Their approach, called
LIME (Local Interpretable Model-Agnostic Explanations), is based on learning the local behavior of a complex classifier
(e.g., a random forest) around a given instance, using a simpler but interpretable classifier (e.g, using a decision tree).
The accuracy of this approximation depends primarily on the ability of the simpler classifier to (locally) approximate the
original model’s decision boundaries. To generate local explanations that are more precise, Reberio et al. take another
approach by solving a multi-armed bandit problem to generate interpretable if-then rules. This technique overcomes
the issue of local complexity but at the cost of over-fitting explanations locally. Although local explanations are specific
to understanding a specific instance, when combined together with explanations of multiple instances, it could provide
an understanding of the model’s overall behavior, similar to a global explanation. Global explanations are explanations
that describe the overall working of the ML model [17], such as feature importance. Lundberg et al.’s SHAP [16] can
be used to create global explanations by aggregating the Shapley values to create feature importance, summary, and
dependence plots. Shapley values are feature attributions that act as driving forces either contributing to the prediction
or not. This implies that, unlike LIME, SHAP does not train an interpretable model that can make predictions.

2.2 Decision rule based

If-then decision rule-based global explanations such as Bayesian decision lists (BDL) [15] strike a balance between
accuracy and interpretability. Although BDL explanations seem similar to those by Ribeiro et al. [24], BDL is a global
explanation whereas anchors is local (explaining a specific instance), and these explanations also differ in the techniques
used to generate them. Lakkaraju et al.’s [13] decision sets are an unordered set of decision lists aimed at increasing
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user interpretability over decision lists, and their user study shows that participants were able to describe decision
sets much faster than decision lists. To further increase user interpretability Lakkaraju et al. [14] incorporated user
inputs and generated a subspace of decision set explanations tailored to the users’ interests. These decision rules-based
explanations are interpretable classifiers in it of themselves and are not model agnostic.

2.3 Design Principles

Recently, Melis et al. proposed a list of design principles to keep in mind while designing explanations, based on
philosophy, cognitive science and social science. These principles state that explanations should be designed such
that they are contrastive, exhaustive, modular and compositional, easlily understandable quantities, and parsimonius.
To generate exact explanations that aim at following the above principles, we planned to take a unique approach of
generating explanations that can integrate local and global aspects while ensuring user-specific interest. Our approach
looks at converting a Random Forest model into logic.

2.4 Trust and Reliance

An intelligible system is one that is understandable by the user and predictable through the use of explanations. One
practical approach to developing intelligible systems is through explainable AI by creating explanations that adhere to
user-desired properties of understandability and predictability, as well as user-desired outcomes of trustworthiness,
reliability, and safety. Trust has been operationalized through constructs of confidence, reliability, predictability, and
efficiency [19],[4]. Cahour et al. [4] used these constructs in the form of a Likert scale to evaluate trust in a cruise
control system. We adapted these questions in our quantitative and qualitative interviews to evaluate domain experts’
trust and reliance in our system. Bussone et al. [2] measured primary care practitioners’ trust and reliance in a clinical
decision support system by measuring how many participants agreed or disagreed with the explanation and by also
measuring the difference in trust ratings (7-point Likert scale) before and after showing confidence explanations
and "why" explanations. The authors concluded that showing a "why" explanation leads to over-reliance on system
suggestions—even if the suggestions are incorrect. Ribeiro et al. [23] measured users’ trust in their local, interpretable
model-agnostic explanations generated on a biased data set and interviewed users after they made their own predictions
against the classifiers in the study. The idea of measuring what proportion of users that agreed or switched their
prediction based on observing a model’s prediction and explanation was implemented by Yin et al. [31] to analyze how
users’ perception of a model’s accuracy impacts trust.

3 METHODS

Our proposed framework consists of three steps: (1) Selecting an optimal early prediction time point, (2) generating
a tractable decision diagram representation of the RF model using the RF classifier, and (3) Building a software tool
to enable visualization and interaction with the explanations. We describe each of these steps below, followed by
details of our one-on-one interviews with domain experts using our software tool, the statistical analysis techniques
to assess agreement of health domain experts with our ML model output, and the questions used to assess trust and
understanding of ML models.

3.1 Explainability Definition

Explainable AI involves the communication of MLmodel results and operations for different audiences and purposes, and
our main goal is to study its effectiveness in communicating these explanations to the health domain expert community.
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To do this we define explainability as the ability for domain experts to trust and understand the explanations presented
when related to the problem at hand.

3.2 Weight Loss Study

The problem we have identified to explore is early-prediction of weight loss. Obesity-attributable medical expenditures
remain high, but interventions effective and economical have not been adequately identified. Predicting the likelihood
of success of weight loss in interventions using machine learning (ML) models may enhance intervention effectiveness
by enabling timely and dynamic modification of intervention components. However, lack of understanding and trust
of these methods impacts adoption among weight management experts. Developments in explainable ML techniques
enable the generation of explanations to interpret decisions of ML models, yet it is unknown how to enhance model
understanding and trust among weight management experts.

We used the Opt-IN dataset to train Random Forest Models for early-prediction of weight loss. The Opt-IN weight-loss
study was a 6-month, theory-guided, technology-supported weight loss intervention aimed at exploring factors that
contribute to improvement in achieving meaningful weight loss. Details of the study have been previously described
[22,23] .The study enrolled adults with body mass index between 25.1 and 39.9 kg/m2. Eligible participants had stable
weight (no loss or gain>25 lbs for the past 6 months), were not enrolled in any formal weight loss program or taking
weight-reducing medications and were interested in losing weight. Participants obtained their personal physician’s
approval to participate, and the physician agreed to receive study reports. All study procedures were approved by
the Institutional Review Board, and all participants provided written informed consent prior to enrolment. We used
demographics information and data collected form participant smartphones to determine what factors early in the
intervention predicted weight loss at 6 months. We define clinically meaningful weight loss to be at least 7% weight
reduction from baseline.

3.3 Framework

3.3.1 Building RF model at an optimal early prediction time point. In order to identify the critical early time-point for
building a machine-learned model, we built several learned models at different time points to select the model-time-point
pair with the highest predictability. We combined both evidence-based and data-driven practices to guide the process.
Evidence-based practice guided our initial selection of features and the subset of time points for early prediction to
select from. Data-driven approaches guided the dimensionality reduction through feature selection and development of
machine-learned model at each time-point. We identified a minimal number of highly predictive features combining
self-reported dietary (initial weight loss, fat intake, saturated fat intake) and engagement variables (entry of food items,
entry of custom food items) to build the RF models. We built multiple RF classifiers (using the OPT-IN dataset, 419
participants after data cleaning and filtering) to predict a binary outcome of weight loss at the end of 26 weeks. We
observed a local optimum in predictability of models at the end of week 2 and at the end of week 3. We decided to
select an earlier timepoint and therefore selected the end of week 2 as the optimum timepoint. We selected the best RF
Model from this timepoint with 13 trees, depth 3 and accuracy 81% to convert to logic.

3.3.2 Generating a tractable representation to facilitate computation of prime implicant explanations The random forest

model underwent three steps. [Figure 1]
(1) Reduction to propositional logic: A random forest classifier generally takes continuous variables as input, but

each continuous feature becomes a proposition when it appears in any given decision tree. Hence, we can view the
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input/output behavior of any random forest classifier as a propositional function. A random forest classifier consists of
an ensemble of decision tress, and it classifies an instance by evaluating each decision tree. Note that a random forest
classifier (and each decision tree in its ensemble) evaluates instances using variable tests of the form xi >= t or xi < t,
which are both propositions. When we take all of the variable tests for a particular feature Xi, they induce a partitioning
of the space of Xi into mutually exclusive and exhaustive intervals. In our reduction, we represent each interval as a
binary variable in our propositional formula, which can be viewed as a discretization of the original continuous variable.

Generating Tractable Representation of Machine Learning Model

(1) Reduction to
propositional logic

(2) Generating a tractable representation
(conversion to OBDD)

(3) Computing Prime
Implication Explanations

Decision Diagrams

Decision Diagram

A

B

0 1

A

B

0 1

Discretization

A

B

0 1

A

B

0 1

Majority
Voting

Explanations Generation

Non Ideal

Weekly WeightChange (-3,3)

Daily FoodEntry (-3,3)

Daily Fat (-0.143, inf)

Daily CustomFood Entry (-1.139, 1.766], (2.972, 3)

Daily Sat Fat (-0.383, 3)

SDD Outcome 0

Ideal

(-3, -0.127]

(-0.982, 3)

(-3, -0.639)

(-1.001, 3)

(-3, 0.448)

1

Fig. 1. Generating Tractable Representation of Machine Learning model to compute prime implicant explanations

(2) Generating Tractable Representation (Conversion to OBDD): Simply obtaining the propositional formula underly-
ing a random forest is not useful, since reasoning with the formula will not be tractable. For example, testing whether
there exists a satisfying assignment (i.e., testing whether there exists some feature vector that obtains a given label) is
an NP-hard problem. Hence, we appeal to the field of knowledge compilation to obtain a tractable representation of
the formula [24]. Knowledge compilation is a sub-field of AI that studies in part, tractable Boolean circuits, and the
trade-offs between succinctness and tractability. That is, by enforcing different properties on the structure of a Boolean
circuit, one can obtain greater tractability (the ability to perform certain queries and transformations ifn polytime) at
the possible expense of succinctness (the size of the resulting circuit). We follow Choi et al [20] in order to compile the
propositional formula of a random forest into an ordered decision graph, or equivalently, an OBDD. Once we compile a
propositional formula into an OBDD, many queries of interest become tractable, typically requiring time that is only
linear in the size of the resulting OBDD. We describe some of these queries next.

(3) Computing prime-implicant explanations: To generate explanations, we compiled the discrete random forest
classifier into an OBDD, which is a tractable representation of a function and can be used to efficiently answer queries
and facilitate efficient explanations of classifiers. Once we have an OBDD representation of our random forest classifier,
we reason about and generate explanations for the behavior of the classifier [25,26]. One type of explanation is called
a sufficient explanation [27] which corresponds to computing the prime implicants of an random forest classifier’s
propositional function. A prime implicant of a random forest’s propositional formula can be thought of as a minimal
assignment of features to values that will fix the output of the random forest classifier.

For each instance, that is, each set of input to the classifier, we generated a shortest prime implicant that is compatible
with it (i.e., the shortest sub-instance that is also a prime implicant). As explained by Shih et al. [26]one way of verifying
the behavior of a classifier, is to verify whether the classifier is compatible with the expectations of a domain expert.
A domain expert may define expectations of input-output pairs for a classifier to be reliable. For example, a domain
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expert may say that anyone who has lost at least 1% of their weight and is maintaining low intakes of saturated fat
early in treatment, is on the trajectory toward clinically meaningful distal weight loss. To facilitate this understanding
of expected behavior, we provide a visual of intervals/ranges for each variable, such that if the value of each variable
falls within these ranges, the classifier output will remain the same. Domain experts need the ability to visualize and
understand explanations quickly and intuitively. We designed a visual for the explanation that highlights the ranges for
each of the variables on a number line. The visual also shows the z-score values in addition to the actual scale for each
of the features. Figure 2 shows a sample instance of an easy weight-loss archetype and it’s corresponding visual, which
we call Prime Implicant Maintenance of Outcome (PRIMO).

Fig. 2. In the above PRIMO visual, for easy weight-loss archetype, the red point indicates the patient profile. The easy weight-loss
archetype tends to be easy because the red points fall well within the edges of the PRIMO generated prime implicant ranges. The
table on the right, shows the different hypothetical archetypes of individuals.

3.4 Designing a tool for weight-management experts

An Interactive software tool was designed to enable researchers to query the ML model and generate explanations for
hypothetical archetypes of individuals. The user can create custom instances by assigning values to each feature and
then select the “Generate Explanation” button [Figure 3]. The software queries the interpretable model to provide a
prediction and PRIMO’s visual. PRIMO was designed to be interactive and intuitive by enabling users to enter values
for features of the model by adjusting sliders that represent standardized values for each feature. The sliders show both
the z-score and corresponding actual value for each of the features to create an instance.

The explanation provided by the model is displayed in the form of highlighted ranges on the interface. If one were to
tweak the input values of an instance within the respective ranges specified by the explanation, the model’s prediction
and explanation is guaranteed to not change. However, on tweaking the input value outside the displayed ranges, the
prediction and the explanation may or may not change. This provides users with the ability to understand the limits of
the model that may or may not produce a different output, providing better insight into the models functionality. In
some cases, there is a possibility that, on selecting certain inputs, there is no explanation range for one or more features.
This indicates that given the values for all the features with ranges defined, the value of the feature without a range
does not affect the output of the predictor.

3.5 Study Design for Evaluating Trust and Reliance with Domain-Experts

The primary goal of the study was to evaluate among end users’, the weight management experts, if the explanations
are understandable and if they would trust to use this tool in a real-world scenario. The participants in the study
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Normalized Values

Actual Values (in brackets)

Mean

User Input

Actual Value (in brackets)Normalized ValueFeature Name

Slider

AverageWeekly ReportedWeight Change: -0.83 (-3.28%)

Fig. 3. Software Interface

include weight-management experts with backgrounds in one or more of the following areas: psychology, nutrition,
epidemiology and clinical experience, statistics, and data science.

Fig. 4. Study Design

The participants in the study [Figure 4] were asked about their background and their experience with analysis
metrics and ML. They were presented with details of the weight loss intervention for which the random forest model
was based. They were then required to provide feedback on 2 other explanation types in addition to PRIMO. These 2
explanation types were used to help participants get acquainted with the idea of explainability and using explainability
tools to understand predictions form a ML classifier. Our explainability framework enabled the generation of these
other 2 explanation types as well, which closely resembles feature ranking based and conditional probability based
explanation types. For each metric, we created four hypothetical archetypes of individuals [Figure 2], two easy and two
difficult cases for prediction, including: (1) a participant expected to lose sufficient weight at the end of the study (easy
weight loss); (2) a participant expected to not lose weight (easy failed weight-loss); (3) a participant that was borderline
but expected to lose sufficient weight (difficult weight loss); and (4) a participant that was borderline and not expected
to lose weight (difficult failed weight loss).
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3.5.1 Defining Trust and Measuring Trust Quantitatively. We define trust to be the domain experts’ tendency to agree
with the model’s explanations and thus with the prediction.

We asked participants to predict the outcome of each hypothetical archetype before and after viewing an explanation.
The quantitative questions were evaluated on a Likert response scale ranging from "not at all" (0), "a little" (1),

"somewhat" (2), "quite a lot" (3), and "extremely" (4). The five quantitative questions were presented as follows: (adapted
from Cahour et al. [30]) (1) How much do you trust the model? (2) How reliable do you think the explainability metric
is? (3) According to you, how predictable are the outputs of this model? (4) According to you, how efficient is the
explainability metric in describing why the model generated the outputs/predictions? and (5) How confident are you in
your answers?

We then calculated and compared the mean (SE) of the Likert response scale values answered by the participants for
the five quantitative questions shown after each task.

We defined trust to be the domain experts’ tendency to agree with the model’s explanations and thus with the
prediction. To measure this quantitatively, based on the definition of agreement fraction and switch fraction by Yin et
al. [31], we define three metrics: switch-to-agree, switch-to-disagree and switch-ratio. Participants were required to
make predictions for the four hypothetical archetypes before and after going over each explainability metric. Across
metrics, a different set of values for the four archetypes was shown; however, for each individual metric the same set of
values for the four archetypes was shown to the participant before and after going over the explainability metric. A
switch occurs when a participant changes their prediction for an archetype after seeing the explainability metric. Since
there are 4 archetypes and 14 participants, the maximum number of switches possible would be 14 * 4 = 56. We defined
the following evaluation metrics based on participants’ agreement or disagreement with the ML model’s decision:

(1) Switch-to-agree: number of times participants switched their response towards a prediction in agreement with
the ML model’s decision.

(2) Switch-to-disagree: number of times participants switched their response towards a prediction that differed from
the machine learning model’s decision.

(3) Switch Ratio: The proportion of switch-to-agree to switch-to-disagree.

3.5.2 Analyzing Trust Qualitatively. Qualitative questions were designed to engage the user in an open-ended response
to capture how and why the metric facilitates prediction of outcomes. The three open-ended questions were presented
as follows: (1) Would you trust this model guided by this evaluation metric to work well in the real world? (adapted
from Ribeiro et al. [16]) (2) How do you think the model is able to distinguish between the classes? (adapted from
Ribeiro et al. [16]) (3) Do you have a better understanding of the model? If yes, why? If no, how would you improve the
explainability metric? (Open Ended). At the end of the study the participants were asked to rank the three explanation
types and to describe their suggestions regarding improvements and which types enhance their understanding of
ML models. We also report on themes regarding participant preference for a certain type of metric over another by
qualitatively analyzing their responses.

4 DISCUSSION

4.1 Utility of exact explanations in advancing model adoption

Given we are the first to study model adoption among weight management experts, we hope to promote discussion in
the rigor of our study design. In doing so we hope to understand the limitations of our study design, and discuss potential
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ways of strengthening the study design to gain further insight into ML model adoption among weight management
experts.

4.2 Measuring ML model trust and reliance

A switch-to-agree scenario indicates that the explanation had an effect on the person’s decision making, and increased
their tendency to agree with the explanation and decision of the model after interacting with PRIMO. For a given
explanation type if the number of switch-to-agree cases were high among participants, it indicates that the explanation
type instills a change in behavior and decision making on the participant’s end, there-by increasing their trust in the
original model. One might argue that this metric does not capture moments where participants agreed with the model
prior to viewing the explanation. In this scenario it is difficult to determine the effect of the explanation, reducing
confidence in the switch-to-agree metric capturing reliance on the explanation metric, and thus, further strengthens
the need to ask participants more specific qualitative questions to gauge reliance. The same argument can be made for
the switch-to-disagree metric.

To further improve the quantification of trust, we measure the proportion of switch-to-agree to switch-to-disagree
cases for a given explanation type, among participants in the study. A high switch-ratio indicates a high switch-to-agree
and low switch-to-disagree, which implies the explanation increased potential for agreement. However, it is unclear
whether this metric is sufficient to measure trust and reliance. To understand participants’ trust and reliance we directly
ask the participant how much they trust the model, and if the explanation was reliable for them to make a decision.
These open-ended type questions may allow us to further investigate how PRIMO may be optimized to increase trust
and reliance.

4.3 Communicating uncertainty of a model’s exact explanation

Initial interviews with weight management experts are showing the need to visualize uncertainty in the explanations.
Our use of exact explanations minimizes discrepancies between the behavior of the explainable model and original
model. This implies measuring uncertainty in the decisions of the original model is equivalent to measuring uncertainty
in the decisions of the explainable model and an effective approach to communicate uncertainty is by visualizing it.
One way to visualize uncertainty is to visualize the dataset the model was trained on, and highlight the differences
between the ground truth and performance of the explanation ranges on the original dataset. Several studies have
shown icon-arrays to be effective in conveying information related to risk statistics [9–11, 33]. Icon-arrays are also used
to communicate risks and uncertainty in several domains [1, 7, 26], because it is not only effective for communicating
information related to comparison of ratios, but also highly effective in conveying uncertainty information related
to frequency framing [21]. Therefore, we plan to use icon-arrays in the future to visualize patient-outcomes in the
weight-loss study, to enhance PRIMO’s visual. In addition to viewing the data, providing clinicians the ability to filter
data and select ranges for each of the features will enable them to create hypothetical profiles to identify patterns or
outliers among the patients. However, selecting ranges for the individual features without knowing the distribution for
each of the features can possibly lead to further uncertainty. This can be accounted for by incorporating density plots
under each of the sliders, to visualize the distribution of each of the features. We hope to promote further discussion in
methods of communicating uncertainty while using exact explanations.
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5 NEXT STEPS

Through this research we have developed new methods for generating exact explanations that are faithful to the
behavior of the original model. We are currently working on refining and testing the framework. We aim to share
this approach with workshop participants and discuss the utility of exact explanations for health domain experts.
Such discussions will be particularly important for considering the generalizability of this approach and the role exact
explanations may play in establishing model adoption and trust. We look forward to feedback from the workshop to
incorporate into our study design and analysis to improve our understanding of the utility of exact explanations and
model adoption among health domain experts.
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