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We consider in this paper the robustness of decisions based on probabilistic thresholds. To

this effect, we propose the same-decision probability as a query that can be used as a confi-

dence measure for threshold-based decisions. More specifically, the same-decision proba-

bility is the probability that we would have made the same threshold-based decision, had

we known the state of some hidden variables pertaining to our decision.

We study a number of properties about the same-decision probability. First, we analyze

its computational complexity. We then derive a bound on its value, which we can compute

using a variable elimination algorithm thatwe propose. Finally, we consider decisions based

onnoisy sensors inparticular, showing throughexamples that the same-decisionprobability

can be used to reason about threshold-based decisions in a more refined way.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

There has been an increased interest recently in providing assurances on the results of probabilistic reasoning systems.

Clear examples come from the many results on sensitivity analysis, which is concerned with the sensitivity of probabilistic

querieswith respect to changes in themodel parameters; see, e.g., [4,5,17,26,27]. For example, some of these results include

specific bounds on the changes in probabilistic queries that could result from perturbing model parameters.

We consider another class of assurances in this paper, which is concerned with quantifying the robustness of threshold-

based decisions made under noisy observations, where we propose a specific notion, called the same-decision probability.

Our proposed notion is cast in the context of Bayesian networks where the goal is to make a decision based on whether a

probability Pr(d | e) surpasses a given threshold T , where e represents evidence or observations. This is the prototypical

scenario in which Bayesian networks are employed to support decision making in practice, for example, in domains such as

diagnosis [22] and (binary) classification [9]. 2

The same-decision probability is based on a few simple ideas. Let H be a subset of the unobserved variables that pertain

to the hypothesis d upon which our decision is based. For example, the variables H may represent the hidden state of a

system, such as health modes of components in a diagnostic application. The variables H could also represent observations

yet to be made, such as medical tests. Now, if we knew the true states of our variables H, we would stand to make a better
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informed decision based on the probability Pr(d | e, h). As it stands, the probability Pr(d | e) can already be viewed as the

expectation of Pr(d | e, h) with respect to the distribution Pr(H | e). Now, different scenarios h may confirm or contradict

our decision based on the probability Pr(d | e, h), but these scenarios may be likely or unlikely, according to Pr(h | e).
The same-decision probability is then the probability that we would have made the same threshold-based decision, had we

known the true state h of our hidden variables H.

We show a number of results about this proposed quantity. First, we formally define the same-decision probability, and

then analyze its computational complexity, showing that the same-decision probability is a PPPP-complete problem. Second,

we propose a bound on the same-decision probability using the one-sided Chebyshev inequality, which requires only the

variance of Pr(d | e, h) with respect to the distribution Pr(h | e). Third, we propose a variable elimination algorithm that

computes this variance in time and space that are exponential only in the constrained treewidth of the given network.

We further consider the same-decision probability in scenarios where we are making threshold-based decisions based

on the readings of noisy sensors. In particular, we propose to explicate the causal mechanisms that govern the behaviors of

noisy sensors. We can then consider the probability that we would have made the same threshold-based decision, had we

known the latent causal mechanisms that led to our sensor readings. We conclude with a number of concrete examples that

illustrate the utility of our proposed confidence measure in quantifying the robustness of threshold-based decisions under

noisy sensor readings. In particular, we illustrate how the same-decision probability is able to distinguish scenarios that are

otherwise indistinguishable, based on the probability Pr(d | e) alone.

2. An introductory example

In the rest of the paper, we use standard notation for variables and their instantiations. In particular, variables are denoted

by upper case letters (X) and their instantiations by lower case letters (x). Moreover, sets of variables are denoted by bold

upper case letters (X) and their instantiations by bold lower case letters (x).

Before we formally define the same-decision probability, we first describe a simple example, to highlight the basic ideas

that underlie the same-decision probability as a way to quantify the robustness of threshold-based decisions [27,5]. Again,

such decisions are the prototypical context inwhich Bayesian networks are employed to support decisionmaking in practice.

These include classical applications such as diagnosis [10], troubleshooting [11], classification [9], and probabilistic planning

[19]. For example, in health diagnosis, physicians are commonly put in situations where they must commit to performing a

test or administering a treatment. Based on their (possibly subjective) belief surpassing some (possibly subjective) threshold

[22], a physicianwill commit to one of these choices. As another example, in systemsdiagnosis, a diagnostician, in the process

of troubleshooting, must decide whether or not they should perform one of many tests, or stop the process of testing and

Fig. 1. A simple Bayesian network, under sensor readings {S1=+, S2=+}. Here (+) indicates a positive sensor reading for a sensor variable Si , or a positive

outcome for a decision variable D or auxiliary variable Xi; similarly, (−) indicates a negative reading or outcome. Variables H1 and H2 represent the health of

sensors S1 and S2. On the left is the posterior on the decision variable D. Network CPTs are given in Fig. 2.

Fig. 2. The CPTs for the Bayesian network given in Fig. 1. Note that for the CPTs of variables Si , only the lines for the case Si=+ are given, since

Pr(Si=−|Hi, Xi) = 1 − Pr(Si=+|Hi, Xi). Moreover, we model the following health states for our sensors: the state Hi= t says that the sensor is truthful,

the stateHi= l says the sensor is lying, the stateHi=p says the sensor is stuck with a positive reading, and the stateHi=n says the sensor is stuck with a negative

reading. We consider noisy sensors further in Section 6.
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Table 1

Scenarios h for sensor readings e = {S1=+, S2=+} for the network in Fig. 1, whereH = {H1,H2}.
Cases above the threshold T = 0.6 are in bold.

h H1 H2 Pr(h | s1, s2) Pr(d | s1, s2, h)
1 t t 0.781071 0.90

2 p t 0.096429 0.82

3 l t 0.001071 0.10

4 t p 0.096429 0.90

5 p p 0.021429 0.50

6 l p 0.001190 0.10

7 t l 0.001071 0.90

8 p l 0.001190 0.18

9 l l 0.000119 0.10

performa repair (or someother intervention) [1,2,20]. Again, this decision is typicallymadebasedonadiagnostician’s beliefs

about thehealth state of the system, and the extent towhich they are certain oruncertain about it. In this section,wehighlight

an example of a threshold-based decision made under a simple but generally applicable context, where observations are

given by noisy sensor readings. This is also a scenario which we shall revisit in more depth in Section 6.

Consider now the Bayesian network in Fig. 1, which models a scenario involving a variable D of interest, and two noisy

sensors S1 and S2 that bear (indirectly) on a hypothesis d. The probability Pr(d | s1, s2) then represents a belief in the

hypothesis d, given sensor readings s1, s2. We want to use this Bayesian network to support a decision on the basis that

this belief exceeds a certain threshold, Pr(d | s1, s2) ≥ T . Fig. 1 shows a particular reading of the two sensors and the

resulting belief Pr(D=+ | S1=+, S2=+). If our threshold is T = 0.6, then our computed belief confirms the decision

under consideration.

Note that in Fig. 1 (and further Fig. 2), we modeled the health of our sensors through variables H1 and H2, which dictate

the behavior of our sensors. Suppose we knew the sensors’ state of health, in which case, we would know how to interpret

the readings of our sensors. For example, we would know whether we could trust their readings, or otherwise ignore

some of them. We would then be able to, and would prefer to, make a better informed decision based on the probability

Pr(d | s1, s2, h) instead of the probability Pr(d | s1, s2), whereh represents the state of our variablesH1 andH2, for example,

h = {H1= t,H2= t}.
Consider Table 1, which enumerates all of the possible health states h of our example, wherewe have nine scenarios with

non-zero probability. In only four of these cases does the probability of the hypothesis pass the given threshold (in bold),

leading to the same decision. In the other five scenarios, a different decision would have been made. Clearly, the extent to

which this should be of concernwill depend on the likelihood of these last five scenarios. As such, we propose to quantify the

confidence in our decision using the same-decision probability: the probability that we would have made the same decision

had we known the actual health states that dictate the readings of our sensors. For this example, this probability is:

0.781071+ 0.096429+ 0.096429+ 0.001071 = 0.975

indicating a relatively robust decision.

3. Same-decision probability

SupposewehaveaBayesiannetworkconditionedonevidencee, and thatweare interested inmakingadecisiondepending

on whether the probability of some hypothesis d surpasses some threshold T . There may be hidden, latent, or otherwise

unobserved variables H that pertain to our hypothesis d. If we did have access to the true joint state h, we would certainly

want to make a better informed decision based on whether the probability Pr(d | e, h) surpasses the threshold T . In the

absence of this knowledge, we can still reason about the possible scenarios h.

Consider the fact that different scenarios hmay confirm or contradict our decision based on the probability Pr(d | e, h).
These scenarios may be likely or unlikely, according to Pr(h | e). However, what if the scenarios h that contradict our

decision, where Pr(d | e, h) < T , have a low probability Pr(h | e)? In this case, we have a degree of confidence in our

original decision based on Pr(d | e) ≥ T , in the sense that even if we were able to discover the state of our unobserved

variablesH, it is unlikely that wewould havemade a different decision. The same-decision probability is then the probability

that we would have made the same decision had we known the states of our unobserved variables H.

Definition 1. Let N be a Bayesian network that is conditioned on evidence e, where we are further given a hypothesis d,

a threshold T , and a set of unobserved variables H. Suppose we are making a decision that is confirmed by the threshold

Pr(d | e) ≥ T . The same-decision probability in this scenario is

P(Pr(d | e,H) ≥ T) =∑
h

[Pr(d | e, h) ≥ T]Pr(h | e), (1)
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Table 2

Scenarios h for sensor readings e = {S1=+, S2=−} for the network in Fig. 1, whereH = {H1,H2}.
Cases above the threshold T = 0.6 are in bold.

h H1 H2 Pr(h | s1, s2) Pr(d | s1, s2, h)
1 t t 0.268893 0.90

2 p t 0.298770 0.18

3 l t 0.029877 0.10

4 t n 0.298770 0.90

5 p n 0.066393 0.50

6 l n 0.003689 0.10

7 t l 0.029877 0.90

8 p l 0.003689 0.82

9 l l 0.000041 0.10

where we have the indicator function

[Pr(d | e, h) ≥ T] =
⎧⎨
⎩ 1 if Pr(d | e, h) ≥ T

0 otherwise.

For the remainder of the paper, we shall denote the same-decision probability by P(Q(H) ≥ T), for reasons that we

discuss below.

Consider the following observation. When we are making a decision based on whether Pr(d | e) ≥ T , even if the state h

of our variables H is unknown, we are in fact averaging over all possible scenarios h when we make a decision. That is,

Pr(d | e)=∑
h

Pr(d | e, h)Pr(h | e) (2)

=∑
h

Q(h)Pr(h | e).

Here, we denote Pr(d | e, h) using Q(h) to emphasize our view on the probability Pr(d | e) as an expectation E[Q(H)]
with respect to the distribution Pr(H | e) over unobserved variables H. We remark that the same-decision probability

P(Q(H) ≥ T) is also an expectation, as in Eq. (2). We view Eq. (1), however, as the expected decision based on Pr(d | e, h),
with respect to the distribution Pr(H | e) over unobserved variables H.

Consider now Table 1, which corresponds to two positive sensor readings in Fig. 1. Assuming a threshold of T = 0.60,
a decision is confirmed given that we have Pr(D=+ | S1=+, S2=+) = 0.880952 ≥ T . We make the same decision,

however, in only four of the nine instantiations h. These probabilities add up to 0.975; hence, the same-decision probability

is 0.975. Consider now Table 2, which corresponds to two conflicting sensor readings. The decision is also confirmed here

since Pr(D=+ | S1=+, S2=−) = 0.631147 ≥ T . Again, wemake the same decision in four scenarios h, although they are

now less likely scenarios. The same-decision probability is only 0.601229, suggesting a smaller confidence in the decision

in this case.

The following theorem now highlights the complexity of computing the same decision probability.

Theorem 1. The problem of deciding whether the same-decision probability is greater than some given probability p is PPPP-

complete.

This complexity result indicates that computing the same-decision probability is computationally quite challenging,

even more so than computing MAP in Bayesian networks, for example, which is only NPPP-complete [21]. In particular, the

complexity classes NP, PP, and the corresponding classes assuming a PP oracle, are related in the following way:

NP ⊆ PP ⊆ NPPP ⊆ PPPP

where the complexity class NPPP already contains the entire Polynomial Hierarchy [24]. The proof of Theorem 1 is in-

cluded in the Appendix, together with some further comments on the complexity class PPPP [3].

Since the same-decision probability is a natural problem that is of practical interest, and given that it is PPPP-complete,

studying the same-decisionprobability couldhelpanalyze the complexityof other reasoningproblems forBayesiannetworks

that may also be PPPP-complete (as MAP has proved useful for analyzing NPPP-complete problems). See [25] for natural

problems in the Polynomial Hierarchy, and also [16] for natural problems in probabilistic reasoning, for a variety of other

complexity classes.



A. Choi et al. / International Journal of Approximate Reasoning 53 (2012) 1415–1428 1419

4. Approximating the same-decision probability

Although computing the same-decision probabilitymaybe computationally difficult, the one-sidedChebyshev inequality

can be used to bound it. According to this inequality, if V is a random variable with expectation E[V] = μ and variance

Var[V] = σ 2, then for any a > 0:

P(V ≥ μ− a) ≥ 1− σ 2

σ 2 + a2
.

Recall now that the probability Pr(d | e) is an expectation E[Q(H)] with respect to the distribution Pr(H | e), where

Q(h) = Pr(d | e, h). Suppose that E[Q(H)] ≥ T and a decision has been confirmed accordingly. The same-decision

probability is simply the probability of Q(H) ≥ T , where Q(H) is a random variable. Using the Chebyshev inequality, we get

the following bound on the same-decision probability:

P(Q(H) ≥ T) ≥ 1− Var[Q(H)]
Var[Q(H)] + [Pr(d | e)− T]2 .

Suppose now that E[Q(H)] ≤ T and a decision has been confirmed accordingly. The same-decision probability in this case

is the probability of Q(H) ≤ T . Using the Chebyshev inequality now to bound P(V ≤ μ + a), we get the same bound for

the same-decision probability P(Q(H) ≤ T). To compute these bounds, we need the variance Var[Q(H)]. We provide an

algorithm for this purpose in Section 5.

For an example of our bound, consider again the example from Fig. 1 and Table 1. We have mean E[Q(H)] = 0.880952
and variance Var[Q(H)] = 0.005823. We can thus state that P(Q(H) ≥ 0.6) ≥ 0.931289. Recall that the exact same-

decision probability here is 0.975. On the other hand, if we take the same network, but are given conflicting sensor readings

e = {S1=+, S2=−}, as in Table 2, then we have mean E[Q(H)] = 0.631147 and variance Var[Q(H)] = 0.114755. The
mean is much closer to our threshold, and our variance is much higher than when our readings were consistent. We can

only state that P(Q(H) ≥ 0.6) ≥ 0.008383. Recall that the same-decision probability is 0.601229 for this example, so the

Chebyshev inequality provides a weak bound here. However, the more extreme the bound is, the more confident we can be

about its tightness.

5. Computing the variance

Let E and H be any two disjoint sets of variables in a Bayesian network, with neither set containing variable D. The

probability Pr(d | e) can be interpreted as an expectation of Q(h) = Pr(d | e, h) with respect to a distribution Pr(h | e).
We propose in this section a general algorithm for computing the variance of such expectations.

Consider now the variance:

Var[Q(H)] = E[Q(H)2] − E[Q(H)]2

=
⎡
⎣∑

h

Pr(d | e, h)2Pr(h | e)
⎤
⎦− Pr(d | e)2.

We need two quantities to compute this variance. First, we need the quantity Pr(d | e), which can be computed using

standard algorithms for Bayesian network inference, such as variable elimination [29,7,6]. The other quantity involves a

summation over instantiations h. Naively, we could compute this sum by simply enumerating over all instantiations h, using

again the variable elimination algorithm to compute the relevant quantities for each instantiation h. However, the number

of instantiations h is exponential in the number of variables inH and will thus be impractical when this number is too large.

However, with a suitably augmented variable elimination algorithm, we can compute this summation more efficiently,

and thus the variance. First, consider the following alternative form for the summation:

∑
h

Pr(d | e, h)2Pr(h | e) = 1

Pr(e)

∑
h

Pr(d, e, h)2

Pr(e, h)
.

Note that the term Pr(e) is readily available using variable elimination and can be computed together with Pr(d | e). Hence,
we just need the sum

∑
h

Pr(d,e,h)2

Pr(e,h)
, which, as we show next, can be computed using an augmented version of variable

elimination. 3

3 Formally, our summation should be over instantiations h where Pr(e, h) > 0. Note that if Pr(e, h) = 0 then Pr(d, e, h) = 0. Hence, if we define x/0 = 0,

then our summation is simply over all instantiations h. In Algorithm 1, we thus define factor division such that φa(xa)
2/ψa(xa) = 0 when ψa(xa) = 0. This is

typically the convention used in the implementation and analysis of jointree algorithms [18,14,13].
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Algorithm 1. Variance by variable elimination

input:
N : a Bayes net with distribution Pr

D, d: a decision variable and a decision state

E, e: a set of observed variables E and evidence e

H: a set of unobserved variables H

output: a factor that contains
∑

h
Pr(d,e,h)2

Pr(e,h)

main:

1: S1← factors of N under observations d, e
2: S2← factors of N under observations e

3: Y← all variables in N but variables H

4: π ← an ordering of variables Y

5: S1← ve(S1, Y, π)
6: S2← ve(S2, Y, π)

7: S ← {χa | χa = φ2
a

ψa
for φa ∈ S1, ψa ∈ S2}

8: π ← an ordering of variables H

9: S ← ve(S,H, π)
10: return

∏
ψ∈S ψ

Let Y denote all variables in the Bayesian network excluding variablesH. If we set evidence e and use variable elimination

to sum out variables Y, we get a set of factors that represents the following distribution:

Pr(H, e) =∏
a

ψa(Xa).

Here,ψa are the factors remaining from variable elimination after having eliminated variables Y.

We can similarly run the variable elimination algorithm with evidence d, e to obtain a set of factors whose product

represents the following distribution:

Pr(H, d, e) =∏
a

φa(Xa).

Using the same variable orderingwhen eliminating variablesY, we can ensure a one-to-one correspondence between factors

in both factorizations: each pair of factors ψa and φa will be over the same set of variables Xa for a given index a. For each

instantiation h, d, e, we then have

Pr(h, d, e)2

Pr(h, e)
=∏

a

φa(xa)
2

ψa(xa)
,

where xa is an instantiation of variables Xa consistent with instantiation h, d, e. We now compute a new set of factors

χa(Xa) = φa(Xa)
2

ψa(Xa)

and run the variable elimination algorithm a third time to eliminate variables H from the factors χa(Xa). The result will be

a trivial factor that contains the quantity of interest. 4

Algorithm 1 provides pseudo-code that implements this procedure. Note that on Line 7, there is a one-to-one correspon-

dence between the factors of S1 and S2 as we have a one-to-one correspondence between the factors passed to ve(S1, Y, π)
and ve(S2, Y, π), and since each call eliminates the same set of variables using the same variable order. Algorithm 1 must

eliminate variablesH last, so the complexity of the algorithm is exponential in the constrained treewidth [6]. This is analogous

to the complexity of variable elimination for computing MAP, where variables H are MAP variables [21].

We finally stress that the algorithm we proposed in this section has applicability beyond that of bounding the same-

decision probability. In particular, any conditional probability of the form Pr(d | e), where D is a network variable and E is

a set of network variables, can always be interpreted as an expectation with respect to the distribution Pr(H | e) for some

other set of network variablesH. Our algorithm can therefore be used to compute the variance of this expectation under the

same complexity.

4 According to the formulation of variable elimination in [6], a trivial factor is a factor over the empty set of variables and contains one entry. It results from

eliminating all variables from a set of factors.
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Algorithm 2. Variable elimination [ve]

input:
S: a set of factors

Y: a set of variables to eliminate in factor set S
π : an ordering of variables Y

output: a set of factors where variables Y are eliminated

main:

1: for i = 1 to length of order π do

2: Si ← factors in S containing variable π(i)
3: ψi ← ∑

π(i)

∏
ψ∈Si ψ

4: S ← S − Si ∪ {ψi}
5: end for

6: return S

6. On the semantics of noisy sensors

In the remainder of this paper, we consider threshold-based decisions where our observations e correspond to readings

from noisy sensors. We considered such a scenario in our example from Section 2. We propose, in particular, to explicate

the causal mechanisms that govern the behavior of sensors, and then consider the same-decision probability with respect

to these causal mechanisms. In Section 7, we illustrate through examples how the same-decision probability can be used to

distinguish scenarios involving noisy sensors, that we could otherwise not distinguish using the probability Pr(d | e) alone.
Our goal, in this section, is to show how we can augment a sensor so that its causal mechanisms are modeled explicitly.

Consider a Bayesian network fragment X → S, where S represents a sensor that bears on variable X , and suppose that

both S and X take values in {+,−}. 5 Suppose further that we are given the false positive fp and false negative fn rates of the

sensor:

Pr(S=+ | X=−) = fp, Pr(S=− | X=+) = fn.

Our augmented sensor model is based on a functional interpretation of the causal relationship between a sensor S and the

event X that it bears on. This causal perspective in turn is based on Laplace’s conception of natural phenomena [23, Section

1.4]. In particular, we assume that the output of a sensor S is a deterministic function that depends on the state of X , and

that the stochastic nature of the sensor arises from the uncertainty in which functional relationship manifests itself.

We propose to expand the above sensor model into X → S← H, where variable H is viewed as a selector for one of the

four possible Boolean functions mapping X to S, which we ascribe the labels {t, l, p, n}:

H X S Pr(S | H, X)
t + + 1

t − + 0

l + + 0

l − + 1

H X S Pr(S | H, X)
p + + 1

p − + 1

n + + 0

n − + 0

We observe that these Boolean function have commonly used diagnostic interpretations, describing the behavior of a

sensor. We will indeed assume these interpretations in the rest of this paper, for convenience:

• the state H= t indicates the sensor is “truthful”,
• the state H= l indicates the sensor is “lying”,
• the state H=p indicates the sensor is “stuck positive”, and
• the state H=n indicates the sensor is “stuck negative”.

Note that any stochastic model can be emulated by a functional model with stochastic inputs [8,23].

5 Our discussion focuses on sensors over binary variables, but generalizing to multi-valued variables is not difficult; see also [8].
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6.1. Assumptions about causal mechanisms

To reason about our augmented sensor model X → S ← H, we need to specify a prior distribution Pr(H) over causal
mechanisms. Moreover, we need to specify one that yields a model equivalent to the original model X → S, when variable

H has been marginalized out:

Pr(S=+ | X=−) =∑
H

Pr(S=+ | H, X=−)Pr(H) = fp (3)

Pr(S=− | X=+) =∑
H

Pr(S=− | H, X=+)Pr(H) = fn. (4)

There is not enough information in the given Bayesian network to identify a unique prior Pr(H). However, if we make some

assumptions about this prior, we may be able to pin down a unique one. We make two such proposals here.

For our first proposal, assume that the probability Pr(H= l) that a sensor lies is zero, which is a common assumption

made in the diagnostic community. This assumption, along with Eqs. (3) and (4), immediately commits us to the following

distribution over causal mechanisms:

H Pr(H)

t 1− fp − fn

p fp

n fn

l 0

For our second proposal, consider the event αp = {H=p∨H= l}which denotes the materialization of a causal mechanism

that produces a false positive behavior by the sensor. That is, if αp holds, the sensor will report a positive reading when

variable X is negative. Moreover, the event αn = {H=n ∨ H= l} denotes the materialization of a causal mechanism that

produces a false negative behavior by the sensor. Now, if we further assume that the false positive and negativemechanisms

of the sensor are independent, we get Pr(αp, αn) = Pr(αp)Pr(αn). Since αp, αn is equivalent to H= l, we now get

Pr(H= l) = fpfn. (5)

This assumption, with Eqs. (3) and (4), commits us to the following CPT:

H Pr(H)

t (1− fp)(1− fn)

p fp(1− fn)

n (1− fp)fn

l fpfn

The assumption is similar to parameter independence used in learning Bayesian networks [12]. 6 Interestingly, under this

assumption (and fp + fn < 1), as the probabilities of H=p and H=n go to zero (i.e., the sensor does not get stuck), the

probability of H= l also goes to zero, therefore, implying that the sensor must be truthful.

Note that the two assumptions discussed above become equivalent as the false positive and false negative rates of a

sensor approach zero. In fact, as we shall illustrate later, the same-decision probability is almost the same when these rates

are small, which is the more interesting case.

6.2. Beliefs based on noisy sensors

Suppose now that we have observed the values of n sensors. For a sensor with a positive reading, the three possible states

are {t, l, p}, since the probability Pr(H=n) that a sensor is stuck-negative is zero when we have a positive reading. Similarly,

for a sensor with a negative reading, the three possible states are {t, l, n}. Hence, we have at most 3n sensor states that have

non-zero probability. Each one of these 3n states are causalmechanisms, and each refers to a hypothesis aboutwhich sensors

are truthful, which are lying and which are irrelevant.

Note that our example network of Fig. 1, from Section 2, corresponds to sensor models X → S ← H expanded from

sensor models X → S with parameters fp = fn = 0.1. Table 1 depicts the nine causal mechanisms corresponding to two

positive sensor readings in the network of Fig. 1. The table also depicts the posterior distribution over these mechanisms,

6 Namely, using a Dirichlet prior on the CPT of S in the original model X → S would basically assume independent false positive and false negative rates.
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suggesting that the leading scenario, by a large margin, is the one in which the two sensors are truthful (h1). Table 2 depicts

the nine causal mechanisms assuming two conflicting sensor readings.

Before we close this section, we point out that the probability Pr(d | s) is actually invariant to any assumption we made

about the causal mechanisms governing sensor readings, i.e., about the prior distribution Pr(H). In other words, as long as

the distribution on variableH satisfies Eqs. (3) and (4), the probability Pr(d | s)will have the same value, regardless of which

particular distributionwe choose for variableH. This is indeed true for the probability of any event that does notmention the

auxiliary variables H. It is not true, however, for the same-decision probability, which we shall see in the following section.

7. Examples

Consider the Bayesian network in Fig. 3, which depicts a chain D→X1→X2→X3 with two sensors Sai and Sbi attached to

each node Xi. Our goal here is to make a decision depending on whether Pr(D=+ | e)≥T for some sensor readings e and

threshold T=0.5.Wewill next consider a number of sensor readings, each leading to the same decision but a different same-

decision probability. Our purpose is to provide concrete examples of this probability, and to show that it can discriminate

among sensor readings that not only lead to the same decision, but also under very similar probabilities for the hypothesis of

interest. The examples will also shed more light on the tightness of the one-sided Chebyshev bound proposed earlier.

Our computations in this section assume the independence between the mechanisms governing false positives and

false negatives, which is needed to induce a distribution over causal mechanisms. We also provide the results of these

computations under the second assumption where the “lying” causal mechanism has zero probability (in brackets). As we

discussed earlier, the two results are expected to be very close since the false positive and negative rates are small. This is

also confirmed empirically here.

We start by observing that Pr(D=+) = 25%. Suppose now thatwehave a positive reading for sensor Sa2.Wenowhave the

hypothesis probability Pr(D=+ | Sa2=+) = 55.34% and the decision is confirmed given our threshold. The same-decision

probability is 86.19%. From now on, we will say that our decision confidence is 86.19% in this case.

The following table depicts what happens when we obtain another positive sensor reading.

Scenario 1 Scenario 2

Sensor readings Sa2=+ Sa2=+ Sb2=+
Hypothesis probability 55.34% 60.01%

Decision confidence 86.19%[85.96%] 99.22%[99.19%]
Note how the decision confidence has increased significantly even though the change in the hypothesis probability is

relatively modest. The following table depicts a scenario when we have two more sensor readings that are conflicting.

Scenario 2 Scenario 3

Readings
Sa1=+, Sb1=−

Sa2=+, Sb2=+ Sa2=+, Sb2=+
Hypothesis probability 60.01% 60.01%

Decision confidence 99.22%[99.19%] 79.97%[80.07%]

Fig. 3. A Bayesian network with six sensors. Variables Sai and Sbi represent redundant sensors for variable Xi . All sensors have the same false positive and negative

rates of fp = fn = 0.05. Variables Xi all have the same CPTs (only the one for variable X1 is shown).
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Note how the new readings keep the hypothesis probability the same, but reduce the decision confidence significantly.

This is mostly due to raising the probability of some causal mechanism under which we would make a different decision.

The following table depicts a conflict between a different pair of sensors.

Scenario 3 Scenario 4

Readings

Sa1=+, Sb1=−
Sa2=+, Sb2=+ Sa2=+, Sb2=+

Sa3=+, Sb3=−
Hypothesis probability 60.01% 60.01%

Decision confidence 79.97%[80.07%] 99.48%[99.48%]

In this case, the sensor conflict increases the same-decision probability just slightly (from 99.22% to 99.48%). 7 The next

example shows what happens when we get two negative readings but at different sensor locations.

Scenario 5 Scenario 6

Readings

Sa1=−, Sb1=−
Sa2=+, Sb2=+ Sa2=+, Sb2=+

Sa3=−, Sb3=−
Hypothesis probability 4.31% 57.88%

Decision confidence 98.73%[98.70%] 95.25%[95.23%]

When the negative sensors are close to the hypothesis, they reduce the hypothesis probability significantly below the

threshold, leading to a high confidence decision.When the readings are further away from the hypothesis (and dominated by

the two positive readings), they reduce the hypothesis probability, yet keep it above the threshold. The decision confidence

is also reduced, but remains relatively high.

Finally, consider the table belowwhich compares the decision confidence, the bound on the confidence, and the variance

used to compute the bound.

Scenario Confidence Bound Variance

1 86.19% ≥ 15.53% 1.54× 10−2

2 99.22% ≥ 90.50% 1.05× 10−3

3 79.97% ≥ 11.05% 8.06× 10−2

4 99.48% ≥ 88.30% 1.32× 10−3

5 98.73% ≥ 98.02% 4.22× 10−3

6 95.25% ≥ 34.73% 1.16× 10−2

Note that our decision confidence is high when our bound on the same-decision probability is high. Moreover, the one-

sided Chebyshev inequality may provide only weak bounds, which may call for exact computation of the same-decision

probability. We consider the exact computation of the same-decision probability a direction for further research. We com-

puted this quantity through exhaustive enumeration here, yet an algorithm that is exponential only in the constrained

treewidth could open new possibilities for reasoning about threshold-based decisions.

8. Conclusion

We considered in this paper the robustness of decisions based on probabilistic thresholds under noisy sensor readings. In

particular, we suggested a confidence measure for threshold-based decisions which corresponds to the probability that one

wouldhavemade the samedecision if onehadknowledge about a set of unobserved variables.Weanalyzed the complexity of

7 Knowing that sensor Sb3 is lying, or that Sa3 is telling the truth, is enough to confirm our decision given our threshold. The conflicting sensor readings thus

introduce new scenarios under which the decision is confirmed, although these scenarios are very unlikely.
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computing the same-decision probability, showing that the corresponding decision problem is complete for the complexity

class PPPP. In response, we used the one-sided Chebyshev inequality to bound this probability, which requires computing

the variance of a conditional probability with respect to the marginal distribution over a subset of network variables. We

also proposed a variable elimination algorithm for computing this variance, whose complexity is exponential only in the

constrained treewidthof thegivennetwork. Finally,weproposed toexplicate the causalmechanisms that govern the readings

of sensors, which allows us to use the same-decision probability to reason about decisions under noisy sensors in a more

refined way.
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Appendix A. On the complexity of same-decision probability

In this section, letN denote a Bayesian network that induces a distribution Pr over a set of variables X. Let E ⊆ X denote

a set of observed variables, and let e (the evidence) denote an instantiation of the variables E. Similarly, letH ⊆ X−E denote

a set of unobserved (hidden) variables, and let h denote an instantiation of H. Let D ∈ X be a variable of interest, where

D /∈ H and D /∈ E. Note that the variable D, together with the sets of variables H and E may only mention a subset of the

variables X. That is, {D} ∪ H ∪ E ⊆ X, where the containment may be strict.

Consider now the following decision problem for Bayesian networks over variables X.

D-SDP: Given a decision based on probability Pr(d | e) surpassing a threshold T , a set of unobserved variables H, and a

probability p, is the same-decision probability:

P(Pr(d | e,H) ≥ T) =∑
h

[Pr(d | e, h) ≥ T]Pr(h | e)

greater than p?

We show here that decision problem D-SDP is PPPP-complete. Intuitively, typical problems in PP are counting (or enumer-

ation) problems (e.g., counting the number of satisfying assignments in a given CNF formula). Intuitively, problems in PPPP

are counting problems that have counting subproblems (the PP oracle). Note that PPPP is the second level of the counting

hierarchy [3]. Moreover, PPPP is the counting analogue of the class NPPP, the latter of which includes a number of Bayesian

network queries as complete problems, including MAP [21], multi-parameter sensitivity analysis [17], and optimization of

decision theoretic value of information [15]. For a review on the complexity of reasoning in Bayesian networks, see, for

example, [6,16,21].

First, we show that D-SDP is in PPPP, by providing a probabilistic polynomial-time algorithm, with access to a PP oracle,

that answers thedecisionproblemD-SDP correctlywithprobability greater than 1
2
.Our algorithmand its proof of correctness

is based on those from [6], showing that the decision problem D-MAR is contained in PP:

D-MAR: Given query variables Q ⊆ X, an instantiation q, and a probability p, is Pr(q | e) > p?

We first observe that the same-decision probability can be viewed more simply as the probability Pr(β | e) of an event β ,
where β = ∨

h:Pr(d|e,h)≥T h.We now specify a probabilistic polytime algorithm for deciding if Pr(β | e) > p.

(1) Define the following probabilities as a function of p:

a(p) =
⎧⎨
⎩ 1 if p < 1

2

1/(2p) otherwise

b(p) =
⎧⎨
⎩ (1− 2p)/(2− 2p) if p < 1

2

0 otherwise

(2) Sample a complete instantiation x from the Bayesian network, with probability Pr(x). We can do this in linear time,

using forward sampling.

(3) If x is compatible with e, we test whether Pr(d | e, h) ≥ T using our PP-oracle, 8 where h is the projection of

instantiation x onto the variables H. We can do this since our test is an instance of D-MAR, which is PP-complete.

8 Equivalently, we can test whether Pr(¬d | e, h) > 1− T , using an oracle for D-MAR.
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(4) Declare Pr(β | e) > p according to the following probabilities
• a(p) if instantiation x is compatible with e, and Pr(d | e, h) ≥ T;
• b(p) if instantiation x is compatible with e, and Pr(d | e, h) < T;

• 1
2
if instantiation x is not compatible with e.

Theorem 2. This procedure will declare Pr(β | e) > p correctly with probability greater than 1
2
.

Proof. The probability of declaring Pr(β | e) > p is

r = a(p)Pr(β, e)+ b(p)Pr(¬β, e)+ 1

2
[1− Pr(e)]

noting that the probability that sample x is compatiblewith e is Pr(e), and then given this, the probability that Pr(d | e, h) ≥
T is Pr(β | e) (by the definition of β). It remains to show that r > 1

2
iff Pr(β | e) > p.

The remainder of the proof mirrors the proof of Theorem 11.5 in [6], which we reproduce here for completeness. First,

r > 1
2
iff

a(p)Pr(β | e)+ b(p)Pr(¬β | e) > 1

2
.

We consider two cases, p < 1
2
and p ≥ 1

2
, which are the two cases in the definitions of a(p) and b(p).

If p < 1
2
, then the following inequalities are equivalent:

a(p)Pr(β | e)+ b(p)Pr(¬β | e) > 1

2

Pr(β | e)+ 1− 2p

2− 2p
[1− Pr(β | e)] > 1

2

Pr(β | e)
[
1− 1− 2p

2− 2p

]
>

1

2
− 1− 2p

2− 2p

Pr(β | e) 1

2− 2p
>

p

2− 2p

Pr(β | e) > p.

Otherwise, if p ≥ 1
2
, then the following inequalities are equivalent:

a(p)Pr(β | e)+ b(p)Pr(¬β | e) > 1

2
1

2p
Pr(β | e) > 1

2

Pr(β | e) > p.

Thus, r > 1
2
iff Pr(β | e) > p. �

Having just shown that D-SDP is in PPPP, it remains to show that D-SDP is PPPP-hard. Given a propositional sentence α
over Boolean variables X1, . . . , Xn, consider the following decision problem.

MAJ-MAJ-SAT: Given some number kwhere 1 ≤ k ≤ n, are there amajority of instantiations x1, . . . , xk , where amajority

of instantiations xk+1, . . . , xn have instantiations x1, . . . , xn that satisfy α?

For a given instantiation x1, . . . , xk , we can ask if a majority of instantiations xk+1, . . . , xn lead to satisfying assignments

x1, . . . , xn (which is a MAJ-SAT subproblem). For the problem MAJ-MAJ-SAT, we ask if there are a majority of such instan-

tiations x1, . . . , xk . Given that MAJ-MAJ-SAT is complete for PPPP [28], we want to reduce instances of MAJ-MAJ-SAT to

instances of D-SDP.

Given propositional sentence α, we assume the typical Bayesian network Nα representing it; see, e.g., Section 11.3 of [6].

This network has root nodes X1, . . . , Xn and a leaf node Sα representing the value of the sentence α. Nodes Xi have uniform

priors, and each logical operator appearing in sentence α is represented using the appropriate deterministic CPT. Fig. A.4

illustrates an example.
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Fig. A.4. A Bayesian network representing the following sentence in propositional logic: α = (X1 ∨ X2 ∨ ¬X3) ∧ ((X3 ∧ X4) ∨ ¬X5).

Theorem3. There are amajority of instantiations x1, . . . , xk,where amajority of instantiations xk+1, . . . , xn have instantiations
x1, . . . , xn that satisfy α iff the same-decision probability P(Pr(Sα | X1, . . . , Xk) >

1
2
) is greater than 1

2
.

Proof. Consider the same-decision probability for a decision based on the threshold Pr(Sα= true) > 1
2
, with respect to

variables X1, . . . , Xk (or equivalently, based on the threshold Pr(Sα= false) ≤ 1
2
):

P
(
Pr(Sα= true | X1, . . . , Xk) >

1

2

)

= ∑
x1,...,xk

[
Pr(Sα= true | x1, . . . , xk) > 1

2

]
· Pr(x1, . . . , xk)

= 1

2k

∑
x1,...,xk

[
Pr(Sα= true | x1, . . . , xk) > 1

2

]
.

Note that Pr(Sα | x1, . . . , xn)=1 if x1, . . . , xn satisfies α, and zero otherwise. Moreover, Pr(x1, . . . , xn)=∏n
i=1 Pr(xi)= 1

2n
.

Thus,

Pr(x1, . . . , xk, Sα= true) = ∑
xk+1,...,xn

Pr(x1, . . . , xn, Sα= true)

= ∑
xk+1,...,xn

Pr(Sα= true | x1, . . . , xn)Pr(x1, . . . , xn)

= ∑
xk+1,...,xn
x1,...,xn|�α

Pr(x1, . . . , xn) = c

2n

where c is the number of instantiations xk+1, . . . , xn for which the instantiation x1, . . . , xn satisfies α. Since Pr(x1, . . . , xk)

= 1

2k
, we have that

Pr(Sα= true | x1, . . . , xk)= c

2n−k

which is the fraction of such instantiations xk+1, . . . , xn. Thus, there are a majority of such instantiations iff c

2n−k >
1
2
.

Finally, the same-decision probability is:

P
(
Pr(Sα= true | X1, . . . , Xk) >

1

2

)
= b

2k

where b is the number of instantiations x1, . . . , xk for which the majority of instantiations xk+1, . . . , xn have instantiations

x1, . . . , xn that satisfy α. Thus, there are a majority of such instantiations x1, . . . , xk iff the same-decision probability is

greater than 1
2
, i.e., iff b

2k
> 1

2
. �
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Theorem 3 establishes that D-SDP is PPPP-hard. Theorem 2 establishes D-SDP is in PPPP. Hence, we have Theorem 1, and

D-SDP is PPPP-complete.
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