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Abstract

We propose the structured naive Bayes (SNB) classi-
fier, which augments the ubiquitous naive Bayes clas-
sifier with structured features. SNB classifiers facilitate
the use of complex features, such as combinatorial ob-
jects (e.g., graphs, paths and orders) in a general but
systematic way. Underlying the SNB classifier is the
recently proposed Probabilistic Sentential Decision Di-
agram (PSDD), which is a tractable representation of
probability distributions over structured spaces. We il-
lustrate the utility and generality of the SNB classifier
via case studies. First, we show how we can distinguish
players of simple games in terms of play style and skill
level based purely on observing the games they play.
Second, we show how we can detect anomalous paths
taken on graphs based purely on observing the paths
themselves.

Introduction
Naive Bayes (NB) classifiers and their extensions are ubiq-
uitous in domains such as data mining, artificial intelli-
gence, and machine learning (Domingos and Pazzani 1997;
Friedman, Geiger, and Goldszmidt 1997; Ng and Jordan
2001). In the classical version of these classifiers, attributes
(aka features) are represented as discrete or continuous ran-
dom variables. For discrete attributes, each variable typically
has a small or manageable number of values. For continuous
attributes, it is similarly assumed that variables have man-
ageable distributions, such as a Gaussian. As a result, these
classifiers are typically used to classify instances that have
simple features, such as colors or intensities, words or fre-
quencies, scores, etc. In contrast, our interest in this paper is
in naive Bayes classifiers with structured features that can
have an exponential number of values, representing com-
plex entities such as combinatorial objects (e.g., permuta-
tions, graphs, paths and game traces).

To realize this objective, we propose the structured naive
Bayes classifier (SNB), which augments the NB classifier by
allowing it to efficiently accommodate structured attributes.
This extension is enabled by two recent advances in knowl-
edge compilation. The first advance is the Sentential De-
cision Diagram (SDD), which we use to compactly rep-
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resent attributes that may have an exponential number of
values (Darwiche 2011; Xue, Choi, and Darwiche 2012;
Choi and Darwiche 2013; Van den Broeck and Darwiche
2015). The second advance is the Probabilistic Sentential
Decision Diagram (PSDD), which we use to represent and
learn distributions over such attributes (Kisa et al. 2014a;
Choi, Van den Broeck, and Darwiche 2015). Our goal is to
realize the above objective while maintaining two attractive
properties of NB classifiers: (1) the ability to learn and then
classify in time that is linear in the size of the classifier, and
(2) the ability to use the classifier in a systematic manner
across multiple domains.

NB classifiers are defined by a class variable C and a set
of simple attributes Xi, each represented by a discrete or
continuous variable. In addition, an SNB classifier includes
a set of SDDs Si, each representing a structured attribute.
The size of an NB classifier is characterized by the number
of classes, the number of attributes, and the number of values
that the (discrete) variablesXi can attain. On the other hand,
the size of the SNB classifier is further characterized by the
number and size of the SDDs Si. As with NB classifiers, we
show that one can learn and classify with SNB classifiers in
time that is linear in their size.

We also show that using structured attributes for a particu-
lar domain amounts to simply defining the SDD correspond-
ing to each attribute. Once the SDDs are defined, learning
from data, and then classifying instances, can all proceed in
a systematic and domain independent manner. We illustrate
this systematic use of structured attributes through case stud-
ies, which delineate the domain specific investment needed.
In particular, we consider two different classification tasks:

1. determining the play style and skill level of players in
games such as tic-tac-toe and hex, given examples of
games that they have played;

2. detecting anomalies in paths taken on graphs, based on
observing the paths taken in a normal operating mode.

There are two alternative approaches to classification tasks
that are targeted by the SNB classifier. The first is to sim-
ply use a classical NB classifier with attributes that have an
exponential number of values (using sparse, tabular repre-
sentations of the corresponding distributions). The second is
to use a dedicated approach, that is specific to the domain
at hand. We comment on both approaches in the context of



C

X1 X2 Xn· · ·

Figure 1: A naive Bayes classifier.

our case studies, arguing for the advantage of using SNB
classifiers more broadly.

This paper is organized as follows. We first review the
classical NB classifier and then show how structured at-
tributes can be represented by SDDs and their distributions
by PSDDs. We follow by proposing the SNB classifier. The
final part of the paper illustrates the utility and generality of
SNB classifiers via case studies, showing how one can de-
fine and represent SNB classifiers, learn them from data, and
finally use them for classification.

Naive Bayes Classifiers
A naive Bayes classifier corresponds to a Bayesian network,
as in Figure 1. Here, we have a single class variable C and
m attribute variables Xi (for simplicity of exposition, we
assume that attributes are discrete). Let c denote a class la-
bel and xi denote a value of an attribute Xi. A naive Bayes
classifier thus induces a distribution:

Pr(c, x1, . . . , xm) = Pr(c) ·
m∏
i=1

Pr(xi | c) (1)

where we have a class prior Pr(C) and conditional distribu-
tions Pr(Xi | C). We can estimate these parameters from
(labeled) data, using maximum likelihood or MAP estima-
tion.1 Once we have learned a naive Bayes classifier from
data, we can label new instances by selecting the class label
c? that has maximum posterior probability given observa-
tions x1, . . . , xm. That is, we select

c? = argmax
c

Pr(c | x1, . . . , xm).

The SNB classifier has a structure similar to the NB classi-
fier of Figure 1. The one exception is that the attributesXi do
not need to be discrete (or continuous) variables as they can
also be SDDs. The only domain specific investment when
using an SNB classifier is to define these SDDs. We will
thus illustrate this process next, before we formally define
the SNB classifier later.

Representing Structured Attributes
Suppose that we have an attribute whose values are the set of
n! permutations (total rankings) over n items. For example,
we may want to build a classifier for some demographic,
based on preference rankings over food, music or movies. In

1We can also learn the parameters discriminatively (by maxi-
mizing the conditional log likelihood), which corresponds to logis-
tic regression. However, we shall focus here on generative models.

the standard NB classifier, we would represent this attribute
by a discrete variable with n! values.

In our proposal, this attribute is defined by an SDD, which
is obtained by a two-step process. The first step is based
purely on Boolean reasoning, in which we define a Boolean
formula whose models correspond to the n! permutations.
The second step corresponds to compiling this formula into
an SDD. The first step can be thought of as a modeling step,
and is the one requiring the main domain specific invest-
ment. The second step is purely computational and is au-
tomated to a large extent. The key observation here is that
while the attribute may have an exponential number of val-
ues, the corresponding SDD may not be exponentially sized.

To illustrate the first step, consider the Boolean variables
Aij for i, j ∈ {1, . . . , n}. Here, the index i represents an
item and the index j represents its position in a permuta-
tion of n items (Choi, Van den Broeck, and Darwiche 2015).
There are 2n

2

instantiations of our n2 Boolean variables,
many of which do not correspond to valid permutations. In
particular, some of these instantiations will place two items
in the same position, or place the same item in multiple po-
sitions. However, using Boolean constraints, we can rule out
all of these invalid instantiations, keeping only the ones that
correspond to valid permutations. Assuming n = 3 items,
the Boolean constraints are as follows:
– Each item i is assigned to exactly one position, leading to

three constraints for i ∈ {1, 2, 3}:
(Ai1 ∧ ¬Ai2 ∧ ¬Ai3)

∨(¬Ai1 ∧Ai2 ∧ ¬Ai3)

∨(¬Ai1 ∧ ¬Ai2 ∧Ai3). (2)

– Each position j is assigned exactly one item, leading to
three constraints for j ∈ {1, 2, 3}:

(A1j ∧ ¬A2j ∧ ¬A3j)

∨(¬A1j ∧A2j ∧ ¬A3j)

∨(¬A1j ∧ ¬A2j ∧A3j). (3)

Our Boolean formula will then correspond to a conjunc-
tion of these six “exactly-one” constraints (in general, when
we encode permutations, we have 2n “exactly-one” con-
straints given n items). Moreover, the resulting formula has
6 = 3! models. For example, the permutation (2, 1, 3) is rep-
resented by the following model:

¬A11, A12,¬A13, A21,¬A22,¬A23,¬A31,¬A32, A33.

The second step is to compile our Boolean formula into
a Sentential Decision Diagram (SDD), which is handled by
an SDD compiler.2 Figure 2 (left) depicts an example SDD,
which is a Boolean circuit with very specific properties.
Here, circles represent disjunctions and paired boxes rep-
resent conjunctions.3

2In our experiments, we use the publicly available SDD com-
piler at http://reasoning.cs.ucla.edu/sdd.

3The properties of an SDD allow certain operations, which are
hard on arbitrary Boolean formulas, to be performed efficiently
on the corresponding SDD. For example, model counting can be
performed using SDDs in time that is linear in the size of the
SDD (Darwiche 2011).
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Figure 2: An SDD, a vtree, and a PSDD for the Boolean formula (A⇔ B) ∨ ((A⇔ ¬B) ∧ C).

There are many SDDs that are equivalent to a given
Boolean formula, yet the SDD is canonical once a vtree is
fixed. This is a binary tree whose leaves correspond to the
Boolean variables of the formula; see Figure 2 (center). The
SDD compiler we used tries to find the vtree leading to the
smallest possible SDD. As we shall see later, this amounts
to minimizing the number of parameters needed to define a
distribution over the attribute encoded by an SDD.

Before we discuss SDD parameterization, we make note
of the following point. While the process of compiling a
Boolean formula into an SDD is automated, it is the one
and only step in our approach that can fail in practice; that
is, the compiler may fail to compile the formula. While this
is unavoidable in general, given the hardness of compilation,
the process can be aided by choosing a specific, good vtree,
instead of relying on the compiler to find it. We will later
mention the specific vtrees we used in our case studies.

We are now ready to discuss the final technical ingredi-
ent needed for defining the SNB classifier. An SDD rep-
resents the state space of an attribute, i.e., its values. To
induce a probability distribution over this space, we will
appeal to Probabilistic Sentential Decision Diagrams (PS-
DDs) (Kisa et al. 2014a). A PSDD is obtained by sim-
ply parameterizing the edges and leaves of an SDD; see
Figure 2 (right). We make a few observations here. First,
the number of parameters needed to induce a distribution
over the models of an SDD (i.e., values of corresponding
attribute) is proportional to the size of the SDD, not the
number of its models (i.e., not the number of attribute val-
ues). Second, any distribution over a set of discrete vari-
ables can be represented by a PSDD (i.e., the PSDD is a
complete representation). Third, computing marginals and
most-likely instantiations can be done in time linear in the
PSDD size. Finally, the maximum likelihood parameters of
a PSDD can be learned in closed-from from a complete
dataset. For more on PSDDs, please see (Kisa et al. 2014a;
Choi, Van den Broeck, and Darwiche 2015).

Structured Naive Bayes Classifiers
A classical NB classifier is defined by a class variable C
and attributes Xi. Moreover, its parameters include a prior

distribution Pr(C) for the class variable C, and a set of con-
ditional distributions Pr(Xi | c), one for each class label c
and attribute Xi. One estimates these parameters from la-
beled data, corresponding to a set of examples of the form
c, x1, . . . , xm, where c is a class label, and each xi is an ob-
served attribute value.

The SNB classifier is defined similarly, except that one
can also have structured attributes that are represented by
SDDs and whose conditional distributions are represented
by PSDDs. For simplicity of exposition, we only include
structured attributes in the following definition, but one can
also include simple attributes as we show later.

Definition 1 A Structured Naive Bayes (SNB) classifier is
composed of:

• a discrete variable C representing a class,
• SDDs S1, . . . , Sn representing structured attributes.

The parameters of an SNB classifier are defined as follows:

• for the class variable C, there is a class prior θC ,
• for each class label c and structured attribute j, there is a

set of parameters θj,c for the SDD Sj , inducing a PSDD
for the corresponding conditional distribution.

To define the semantics of an SNB classifier, let Pj,c denote
the distribution induced by the PSDD obtained from SDD
Sj and its parameters θj,c. Moreover, let sj denote a model
of SDD Sj . We then have

Pr(c, s1, . . . , sn) = θc ·
n∏

j=1

Pj,c(sj). (4)

Hence, if the class variable has k values, then the SNB clas-
sifier will have k × n PSDDs.

It is straightforward to also include simple attributes rep-
resented by discrete and continuous variables. For exam-
ple, if we include m discrete attributes Xi with parameters
θxi|c = Pr(xi | c), we obtain the following distribution:

Pr(c, x1, . . . , xm, s1, . . . , sn) = θc ·
m∏
i=1

θxi|c ·
n∏

j=1

Pj,c(sj).



Compare this form with that of Equations 1 & 4. To simplify
further discussions, we will next assume that all attributes of
an SNB are structured, and hence represented by SDDs.

Data. Like NB classifiers, an SNB classifier is also
learned from labeled data, except that our examples now
have the form c, s1, . . . , sn. Here, c is a class label. More-
over, each sj is a model of SDD Sj and corresponds to an
instantiation of the variables over which the SDD Sj is de-
fined. In other words, each sj represents a particular value
of the structured attribute represented by SDD Sj .

Training. LetD denote a given dataset as discussed above
and let Dc denote the subset of the dataset D with class
labels c. As in traditional NB classifiers, we estimate the
class parameters θc, which capture the prior Pr(C), based
on the relative proportions of the class labels in the dataset
D. Moreover, we estimate the parameters θj,c, which capture
the conditional distributions Pj,c(.), from the dataset Dc us-
ing the PSDD parameter estimation algorithm (Kisa et al.
2014a). We note that ML and MAP parameters can be es-
timated in closed-form using a single pass over the dataset
Dc, as in traditional NB classifiers. The following proposi-
tion more formally summarizes the complexity of training
an SNB classifier.

Proposition 1 Given a dataset D of size N , with k class
labels and n attributes, where each attribute is encoded as
an SDD of size O(s), we can learn an SNB classifier with
O(kns) parameters in time O(Nkns).

Classification. Given an unlabeled example s1, . . . , sn,
we assign to it a class label c that maximizes the probability:

Pr(c | s1, . . . , sn) ∝ θc ·
n∏

j=1

Pj,c(sj).

This requires that we evaluate the conditional probability
Pj,c(sj). For NB classifiers with simple attributes, the cor-
responding computation amounts to a simple table lookup.
For SNB classifiers, we need to evaluate a PSDD, which can
be done in time that is linear in the PSDD size (Kisa et al.
2014a). To compute the probability Pr(c | s1, . . . , sn), we
therefore need to perform n PSDD evaluations, one for each
attribute of our SNB classifier. The following proposition
summarizes the complexity of SNB classification.
Proposition 2 Given an SNB classifier with k class labels
and n attributes, where each attribute is encoded as an SDD
of size O(s), we can classify an unlabeled example in time
O(kns).

Case Study: Learning from Game Traces
A game can be viewed as a structured attribute, whose values
correspond to all game outcomes (traces). Moreover, an abil-
ity to represent distributions over game traces allows one to
perform player modeling (Billings et al. 1998), by viewing a
player as a distribution over the games that they play. Going
further, we can view a particular style of game play, or even a
particular level of skill, as a distribution over games. Hence,
given the ability to represent distributions over games, we
can seek to classify a particular player in terms of style or
skill by simply observing the games that they play.

To portray the systematic nature of working with SNB
classifiers to address this and similar problems, we consider
the simple game of tic-tac-toe as an illustrative example.
Here, we want to build a classifier that determines the play
style of a player given examples of tic-tac-toe games that
they have played. In the Appendix, we also consider the clas-
sification of player skill in the game of Hex.

Briefly, tic-tac-toe is played on a 3 × 3 grid, where two
players alternate, playing their symbol (either an “X” or an
“O”) on the board. The first player to place three of their
symbols in a row (by row, column or diagonal) is the winner
of the game. Consider the following tic-tac-toe board, where
each position has been labeled by an index from 1 to 9:

1 2 3
4 5 6
7 8 9

To learn from traces of tic-tac-toe games, we first need to
represent these game traces as structured attributes. This
process is simplified, if we assume that a game is played un-
til the board is completed, and not just when the first three-
in-a-row is obtained. Under this assumption, we can view
a tic-tac-toe game as a permutation of the board positions.
For example, the following vector of 9 elements represents
a game of tic-tac-toe:

(5, 2, 3, 7, 6, 4, 9, 1, 8)

where the i-th element represents the move played in turn i:

X

pos. 5

O
X

pos. 2

O X
X

pos. 3

. . .

O O X
O X X
O X X

pos. 8

Under this representation, there are 9! = 362, 880 distinct
tic-tac-toe game traces (we ignore board symmetries, here).

Representing Games. We showed in an earlier section
how permutations over n items can be represented as an
SDD. The only (semantical) difference here is that a Boolean
variables Aij represents the event that a position i is played
at turn j. Moreover, in this case, we compiled the constraints
of Equations 2 & 3 (for permutations with 9 elements) us-
ing a publicly available SDD compiler. In our experiments,
we used a vtree that is found by (1) grouping all variables
Aij for each turn j into a right-linear sub-vtree, ordered by
position, (2) constructing a right-linear vtree over these sub-
vtrees, ordered by turn. Indeed, this is the only domain spe-
cific investment that we need, to address this problem using
an SNB classifier. The remaining steps are systematic and
shared by the use of SNB classifiers across other domains.

Data. Suppose that we have a labeled dataset D where
each example consists of a tic-tac-toe game (i.e., a permu-
tation) σ, and a class label c. In this case, the class label
is a pair (c1, c2), which denotes the play styles of the first
and second player. Hence, a labeled example is of the form
(c1, c2), σ, where σ is a permutation encoded as an instanti-
ation of variables Aij .

Training. As in traditional NB classifiers, we estimate
the class prior Pr(C1, C2) based on the relative proportions
of the class labels. To estimate the conditional distributions



Pr(σ | c1, c2), we learn the corresponding PSDD distribu-
tion as discussed earlier. In particular, we learned MAP esti-
mates as in (Kisa et al. 2014a).

Classification. Given a pair of tic-tac-toe players and m
example games σi that the pair have played, we want to as-
sign them a class label c = (c1, c2) which best describes
their play styles, by maximizing the probability:

Pr(c1, c2 | σ1, . . . , σm) ∝ Pr(c1, c2)

m∏
i=1

Pr(σi | c1, c2).

We can also classify the first player alone, by marginalizing
out the second player, and maximizing the probability:4

Pr(c1 | σ1, . . . , σm) =
∑
c2

Pr(c1, c2 | σ1, . . . , σm).

We note that we did not use simple attributes here (say over
discrete variables, as in a classical NB classifier), although
we could have (e.g., to increase classification accuracy fur-
ther). Also, the conditional distributions Pr(σ | c1, c2) are
shared among the different observed games σi.

Empirical Evaluation. To obtain tic-toe-toe games of
varying but known styles, we simulated games from differ-
ent tic-tac-toe programs. We considered three types:

• random: a player that makes moves at random;

• simple: a player that uses heuristic rules;5

• optimal: an optimal player, guaranteeing at least a draw.6

We considered all 3 × 3 = 9 combinations of first and sec-
ond players. To represent each game as a permutation, we
completed games that did not fill the board in a fixed way
(unplayed squares were played in order by index).

We simulated training sets of 216 games for each pair of
player types. We thus learned 9 PSDDs for each conditional
distribution Pr(σ | c) using the same SDD structure. The
resulting PSDDs had 3, 328 nodes and 1, 793 parameters.

We evaluated our SNB classifier based on independent
testing sets, using simulated games for the players of each
pair of playing styles. Figure 3 illustrates the results of clas-
sifying the first player’s style in tic-tac-toe as described ear-
lier (we obtained comparable results for the second player).
On the x-axis, we increased the number of games available
to classify the style of the first player. For each style of the
first player, we simulated 210 sets of games for each style
of the second player. Hence, each plot point is an average
of 3 · 210 sets of games. First, consider the SNB classifier
with PSDDs to represent games (plotted with solid lines).
One game is clearly not sufficient to classify the type of a
player: a random player, for example, could by chance play
a game optimally. However, after observing enough games

4It is also possible to classify the first player alone, given second
players of different styles, although this requires another extension
of the NB classifier, which we do not consider here.

5If a player can win or block a loss in their turn, they make the
corresponding play; otherwise, they play a square at random.

6We used a player which uses brute-force enumeration to
find an optimal move, at http://code.activestate.com/
recipes/578563/ (which contained a bug that we fixed).
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Figure 3: Classification accuracy in tic-tac-toe. Solid lines
denote an SNB classifier with PSDDs. Dashed lines denote
an NB classifier with Mallows models.

from the same player, we can classify their play style with
high accuracy.

Alternative Approaches. To learn a traditional NB clas-
sifier for this problem, we need to learn the distribution
over the class labels Pr(c1, c2) and the conditional distri-
butions over games Pr(σ | c1, c2). A tabular representa-
tion of this conditional distribution would however require
9! − 1 = 362, 879 parameters, which is neither practical
to represent nor to learn (contrast this to the 1, 793 param-
eters needed by a PSDD). Other (specialized) models for
representing permutations, such as the Mallows model (Mal-
lows 1957), do not appear well suited for representing games
of tic-tac-toe. For one, the Mallows model has a unimodal
shape, whereas tic-tac-toe has multiple symmetries, hence
leading to multimodal distributions. We did indeed evaluate
the Mallows model to represent these conditional distribu-
tions, by replacing the PSDDs in the above experiments. The
classification results were much worse as shown in Figure 3.
The Mallows model is likely underfitting the data, i.e., its
underlying assumptions are too strong for representing tic-
tac-toe games (as discussed earlier).

Case Study: Detecting Anomalous Paths
One common use of naive Bayes models is in anomaly and
outlier detection; see, e.g., (Chandola, Banerjee, and Ku-
mar 2009; Hamerly and Elkan 2001). For example, we may
want to detect abnormal patterns in automobile traffic, which
could be indicative of a traffic accident, or other type of
emergency. We may also want to detect abnormal traffic in a
packet switching network, which could be indicative of, say,
a network intrusion by a computer worm (Dash et al. 2006).

We can view the route taken by a car or network packet as
a path that connects two points on a graph. See, for example,
Figure 4, where we have a source node s on the upper-left,
and a destination node t on the lower-right. For an automo-
bile driving on city streets, the path illustrated on the left
may be considered normal, whereas the one on the right may
be considered abnormal, as there was a detour en route to the
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Figure 4: Paths on a 4 × 4 grid: a normal path (left) and an
anomalous one (right).

destination.
By viewing automobile or network traffic as a distribu-

tion over paths on a graph, we can seek to detect anomalous
traffic using an SNB classifier. Here, we have two class la-
bels: “normal” and “anomalous”. As in semi-supervised ap-
proaches to anomaly detection, we can learn a “normal” dis-
tribution over paths, and assume, say, a uniform distribution
over paths as “anomalous”. The basic idea here is to detect
paths that do not follow the “normal” distribution.

Representing Paths. Suppose we are given an undirected
graphG = (V,E) with a fixed source node s and a fixed des-
tination node t. We first want to define a structured attribute
(as an SDD) whose values are all simple paths connecting s
to t on the graph G. Here, a simple path refers to a path that
does not revisit any node. To achieve this objective, we will
follow the two-step process we discussed earlier: define a
Boolean formula whose models correspond to simple paths,
then compile the formula into an SDD.

For the first step, we define Boolean variables Ai,j , one
for each edge {i, j} ∈ E. We want to construct a formula
α where each model of α corresponds to a unique path con-
necting s to t. If a model sets variable Ai,j to true, then the
(s, t)-path of the model uses the edge {i, j}; if variable Ai,j

is false, then it is not used. For example, consider a 2 × 2
grid where the source s is the upper-left corner (labeled 1)
and the sink t is the lower-right corner (labeled 4), with the
other two corners labeled 2 and 3. In this case, we have two
simple paths: 1− 2− 4 and 1− 3− 4. Our desired formula
α also has two models, given by:

(A12∧¬A13∧A24∧¬A34)∨ (¬A12∧A13∧¬A24∧A34).

For a general graph G = (V,E), we can construct our for-
mula α recursively based on the formulas of sub-graphs. Let
G\s denote the graph where sink node s and its incident
edges have been removed fromG. Let αG

s,t denote a formula
representing the set of all simple paths connecting s to t in
graph G. We can express αG

s,t as a recurrence:

αG
s,t =

∨
{s,j}∈E

As,j ∧ αG\s
j,t ∧

∧
{s,k}∈E:k 6=j

¬As,k

 .
To obtain all paths connecting s to t in G, we consider all
of the possible first edges {s, j} ∈ E in our path, and then
recursively find all paths from j to t, but in the smaller graph
G\s. This leads to three sub-formula, where we:

1. set As,j positively, i.e., we use the edge {s, j},
2. recursively find all paths α

G\s
j,t connecting j to t in G\s,

3. set all other As,k negatively, i.e., no other edges on the
path can go through s (since paths are simple).

Our base case corresponds to the case where s = t:

αG
s,s =

∧
{i,j}∈E

¬Ai,j

where only an empty path is allowed (since we cannot re-
visit a node, so no edges can be used). This concludes the
first step of our two-step process as we now have a Boolean
formula whose models correspond to the values of our struc-
tured attribute (i.e., simple paths).

The second step is compiling the formula αG
s,t into an

SDD using an SDD compiler as we did in the earlier case
study. However, for the special case of OBDDs (which cor-
responds to an SDD with a right-linear vtree), a particularly
efficient approach is summarized in (Minato 2013) based
on Knuth’s Simpath algorithm (Knuth 2009). For our ex-
periments, we used the GRAPHILLION library to construct
a ZDD for our formula (Inoue et al. 2014), which was con-
verted into an SDD using a right-linear vtree (with the same
ordering). As in the previous case study, this concludes the
domain specific investment needed for handling this partic-
ular problem. The rest are systematic steps when using the
SNB classifier approach, shared across other domains.

Empirical Evaluation. We now illustrate how the SNB
classifier can perform anomaly detection in a scenario sim-
ilar to the one depicted in Figure 4. We consider paths in
8× 8 grid graphs, connecting the upper-left and lower-right
corners. The resulting PSDD has 26,884 unique parameters,
in contrast to the 789,360,053,252 possible simple paths,
which would be too large to represent using a tabular rep-
resentation (traditional NB classifier). We simulate train-
ing data based on the following iterative process: starting
at node s, we randomly select an edge, either going right
or down (when possible), that brings us closer to t. We re-
peat until we reach node t. We simulated training sets of size
28, 29, 210, 211 and 212, for the “normal” distribution. We in-
dependently simulated testing datasets for the “normal” and
“anomalous” cases, each of size 212 (again, we assume a
uniform distribution for the “anomalous” case). For learning
PSDDs, we assumed Dirichlet priors with exponents 2 (cor-
responding to Laplace smoothing). We also learned an NB
classifier, using a sparse tabular representation of the condi-
tional distributions (also using Laplace smoothing).

Below, we report the proportion of the test instances
which were correctly classified as anomalous or not.

training set size 28 29 210 211 212

SNB accuracy 98.97% 99.38% 99.58% 99.75% 99.87%
tabular accuracy 59.09% 65.34% 72.08% 79.98% 87.80%

We remark that the SNB classifier obtains relatively high
accuracies, even with relatively small training sets. This fur-
ther indicates the suitability of the PSDD as a representa-
tion for the process used to generate the “normal” dataset.
In particular, in our generating process, the distribution over
paths connecting an internal node i, and the destination t,



is (roughly) independent of how we arrived at node i. The
PSDD is particularly suitable for handling these types of
conditional independencies (Kisa et al. 2014a).

Related Work
There are a few notable examples where probabilistic mod-
els have been adapted to support complex features that
are not easily representable using, e.g., discrete variables
or Gaussians. For example, logistic regression models and
some of their extensions have been adapted with convo-
lutional neural networks to extract features from images
(Deng et al. 2014; Krizhevsky, Sutskever, and Hinton 2012).
Similarly, hidden Markov models have been adapted with
deep neural networks to extract features from acoustic in-
puts (Hinton et al. 2012).

As a tractable probabilistic model, the PSDD is related
to the Arithmetic Circuit (AC) representation of probabil-
ity distributions (Darwiche 2002; 2003). ACs are also a
tractable representation and their size can be quite small
for some distributions whose graphical models have a high
treewidth (Chavira and Darwiche 2008). A number of ap-
proaches have previously been proposed for learning ACs
from data (Lowd and Domingos 2008; Lowd and Rooshenas
2013; Bekker et al. 2015). ACs with latent variables are also
sometimes called sum-product networks (SPNs) (Poon and
Domingos 2011; Gens and Domingos 2012; Rooshenas and
Lowd 2014).

One of the primary differences between PSDDs and the
above representations is the ability of PSDDs to operate
on a structured probability space: one that corresponds to
a user-specified subset of variable instantiations. The repre-
sentations above all operate on unstructured spaces, which
correspond to all instantiations of a set of variables. This
difference is crucial for representing combinational objects,
as we did in this work, and for learning distributions over
them. Moreover, while the above representations are gen-
eral and expressive, they can be prone to overfitting (Srivas-
tava et al. 2014) unless we have access to massive amounts
of data. Previous empirical studies have provided support
that this distinction (structured versus unstructured spaces)
can have a significant impact on the statistical efficiency of
learning (Kisa et al. 2014b). Another notable advantage of
PSDDs is the tractability of learning them, given closed-
form estimates of MAP/ML parameters from complete data
(Kisa et al. 2014a). Recently, closed-form estimates were
also proposed for a restricted class of SPNs (Peharz, Gens,
and Domingos 2014).

Conclusion
We proposed the structured naive Bayes (SNB) classifier,
which extends the ubiquitous naive Bayes classifier. While
naive Bayes classifiers are limited to simple attributes, SNB
classifiers can also support structured attributes, such as
combinatorial objects, in a general and systematic way. We
illustrated the utility and effectiveness of this approach us-
ing two case studies, which delineate the domain-specific in-
vestment needed when using SNB classifiers. First, we illus-
trated how to classify the play style and skill level of a game
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Figure 5: Classification accuracy in 3 × 3 Hex. Solid lines
denote an SNB classifier with PSDDs. Dashed lines denote
an NB classifier with Mallows models.

player, based on the traces of games that they play. Second,
we illustrated how to detect anomalous paths on graphs, by
learning from, and classifying, the paths themselves.
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Appendix: Learning from Game Traces (Hex)
We also considered the board game Hex, played on an n×n
hexagonal grid. The players take turns, playing a single
stone on an initially empty grid. Each player is associated
with opposing ends of the board. The winner is the first
player to connect their ends of the board with their stones.

In this case, we consider the problem of learning the skill
level of a Hex player. We consider a computer Hex player,
which is based on Monte Carlo tree search.7 Here, the skill
level of a player corresponds to the number of samples that
the program is allowed, with more samples corresponding to
a higher skill. We considered a “beginner” player (a random
player), an “intermediate” player, and an “expert” player,
with the “expert” player receiving 5 times as many samples
as the intermediate one.8

We assumed that the board is completed even after the
game is won (as we did in tic-tac-toe). Each Hex game can
then be viewed as a permutation over the n× n positions in
the hexagonal grid. In our experiments, we consider the sim-
ple case of 3× 3 Hex. Hence, we can use precisely the same
SDD representation of games in 3×3 Hex as we used earlier
for tic-tac-toe. Moreover, we have analogous processes for
training an SNB classifier and for classifying with it. Our
main goal here is to show that it is possible to classify the

7Available at https://github.com/dpearson/Hex/.
8In the terms of the program used, the “intermediate” player had

skill level 30, and the “expert” player had skill level 150. The “skill
level” was determined by examining the winning rates as skill lev-
els were varied.



skill level of a game player using SNB classifiers, in addi-
tion to classifying play styles as we did in tic-tac-toe.

Figure 5 highlights the results of classifying the first
player’s style in 3× 3 Hex (we obtained comparable results
for the second player). On the x-axis, we increase the num-
ber of observed games used to classify the first player. Each
point is an average of 3 × 1, 000 = 3, 000 sets of observa-
tions, 1, 000 each for the 3 levels of second players. Consider
first the SNB classifier with PSDDs (solid lines). As we in-
crease the number of games observed, we get more accurate
classifications of a player’s skill. Here, we see that a “be-
ginner,” who plays randomly, is easiest to classify, requiring
only a few games to obtain a high level of accuracy.9 The
“intermediate” and “expert” players, however, are harder to
distinguish as we need to observe more games before we ob-
tain a higher level of confidence in their skill. Again, the NB
classifier with the Mallows model (dashed lines) does not
appear to be a good representation for Hex games. As with
tic-tac-toe, Hex has board symmetries which leads to multi-
modal distributions. This does not appear to be a good fit for
the Mallows model as it has a unimodal shape.
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