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Abstract

A recent formalization of Iterative Belief Propagation
(IBP) has shown that it can be understood as an exact in-
ference algorithm on an approximate model that results
from deleting every model edge. This formalization has
led to (1) new realizations of Generalized Belief Prop-
agation (GBP) in which edges are recovered incremen-
tally to improve approximation quality, and (2) edge-
recovery heuristics that are motivated by improving the
approximation quality of all node marginals in a graphi-
cal model. In this paper, we propose new edge-recovery
heuristics, which are focused on improving the approxi-
mations of targeted node marginals. The new heuristics
are based on newly-identified properties of edge dele-
tion, and in turn IBP, which guarantee the exactness of
edge deletion in simple and idealized cases. These prop-
erties also suggest new improvements to IBP approxi-
mations which are based on performing edge-by-edge
corrections on targeted marginals, which are less costly
than improvements based on edge recovery.

Introduction

Among approximation algorithms for reasoning in proba-
bilistic graphical models, iterative belief propagation (IBP),
also known as loopy belief propagation (Pearl 1988; Mur-
phy, Weiss, and Jordan 1999) has been extremely influen-
tial in certain classes of applications. For instance, IBP has
spawned approaches capable of solving particularly difficult
instances of the satisfiability problem (Braunstein, Mézard,
and Zecchina 2005), and has shown to be an effective ap-
proach to a variety of computer vision tasks (Szeliski et al.
2006), particularly in stereo vision. Its biggest impact has
been in the field of information theory, where revolutionary
algorithms for decoding error-correcting codes have shown
to be instances of iterative belief propagation in a Bayesian
network (Frey and MacKay 1997; McEliece, MacKay, and
Cheng 1998).

The successes of IBP as an approximate inference algo-
rithm spurred many improvements and generalizations, in-
cluding the family of Generalized Belief Propagation (GBP)
algorithms (Yedidia, Freeman, and Weiss 2005). More re-
cently, we proposed a special class of GBP approximations,
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called ED-BP (Choi and Darwiche 2006), which character-
ized IBP as an algorithm in a fully-disconnected approxima-
tion of the original network, found by deleting every edge
from the original. By recovering edges back into the ap-
proximation, we can seek more structured, and hopefully
more accurate, approximations. This leads to a spectrum
of approximations, with IBP on one end (when every edge
is deleted) to exact inference on the other (when every is
recovered).

Identifying good instances in this spectrum is vital to the
success of this and other similar approaches to approximate
inference, as no single instance will likely be effective for
all possible queries. Indeed, we proposed in (Choi and
Darwiche 2006) a mutual information heuristic for ED-BP

in Bayesian networks that is sensitive to both the network
parametrization and to the observations at hand, and is fur-
ther based on a global property of edge deletion that guar-
antees exact marginals for every variable in the model. This
approach can provide good approximations (even exact) for
many variables, but may still provide only poor approxima-
tions for others.

One must then ask if this is the ideal approach, particu-
larly when one is interested in a particular query variable.
Indeed, from query-to-query, ones focus may change from
one sub-model to another, while varying observations may
render different parts of the model irrelevant. Ideally, one
would like to target the approximation so as to maximize the
accuracy of the probabilities one is truly interested in, giving
less weight to those parts of the model that are only weakly
relevant to the query at hand.

We propose here a focused approach to edge recovery in
ED-BP approximations that is query-sensitive, and further
targets the variables of interest. It is based on new condi-
tions that are sufficient for the exactness of a particular vari-
able’s marginals, in the simplified case where a single edge
is deleted. The resulting analysis suggests a new heuristic
for focused edge-recovery, which is empirically more effec-
tive at improving the approximation of a targeted variable of
interest, compared to a heuristic based on the network as a
whole. Our analysis further leads to a notion of marginal
corrections, that allows a targeted approximation to be im-
proved further when edge recovery becomes infeasible. We
illustrate the benefit of a focused approach to approximating
marginals, experimentally.
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Figure 1: Deleting an edge U → X by adding a clone Û of

U and binary evidence variable Ŝ.
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Figure 2: In the absence of the dotted edge, the deleted edge
U → X split the network into two and ED-BP yields exact
marginals. In the presence of the dotted edge, ED-BP param-
eters may be overcompensating.

Edge Deletion and Belief Propagation

We review here ED-BP, the edge deletion approach to ap-
proximate inference, introduced in (Choi and Darwiche
2006), that gives rise to a class of Generalized Belief Prop-
agation (GBP) algorithms (Yedidia, Freeman, and Weiss
2005).

Let U → X be an edge in a Bayesian network N that
we wish to delete. When we do so however, we wish also
to introduce two auxiliary variables to compensate for the
dependencies lost due to edge deletion; see Figure 1.

Definition 1 (Edge Deletion) Let U → X be an edge in
a Bayesian network N . We say that the edge U → X is
deleted when it results in a network that is obtained from
N by: (1) removing the edge U → X from the graph; (2)

introducing a clone Û that replaces U as a parent of X; and

(3) introducing an instantiated variable Ŝ that replaces X
as a child of U.

The deletion of an edge U → X thus introduces new pa-
rameters into the network: we must specify for the clone

variable Û the parameters θû, and further for the variable Ŝ

the parameters θŝ|u. Since Ŝ is instantiated, say to state ŝ,
we only need to specify two vectors of size |U |, which we
shall refer to as edge parameters.

Given a networkN and evidence e, our proposal is then to
approximate this network with another N ′ that results from
deleting some number of edges U → X as defined in Defi-
nition 1. Moreover, when performing inference on network
N ′, we will condition on the augmented evidence e′ com-
posed of the original evidence e and each piece of auxiliary
evidence ŝ introduced when deleting edges. More formally,
if Pr and Pr

′ are the distributions induced by networks N

andN ′, respectively, we will use the conditional distribution
Pr

′(.|e′) to approximate Pr(.|e).
Before we can use a network N ′ to approximate queries

in N , we must first specify the values of our edge parame-

ters. The parameters θû for the clone Û should compensate
for the lost influence that parent U had on child X . The

parameters θŝ|u for the instantiated variable Ŝ should com-
pensate for the loss of evidential information that variable
U received through its child X . In the simplified scenario
where deleting a single edge U → X splits a network into
two disconnected subnetworks, we can in fact identify edge
parameters that compensate for the deleted edge precisely.

Condition 1 Let N be a Bayesian network and N ′ be the
result of deleting edges U → X from N . Edge parameters
of an ED-BP approximation satisfy the following conditions:

Pr
′(U = u | e′) = Pr

′(Û = û | e′),

Pr
′(U = u | e′ \ ŝ) = Pr

′(Û = û)

for all values u = û.

These conditions state first that the parent U and its clone

Û should have the same posterior marignals. Given this, it
further states that the strength of soft evidence ŝ on U is the

same as the strength of all evidence e′ on Û .
If an ED-BP network N ′ was the result of deleting a sin-

gle edge that split the network into two independent subnet-
works, then Condition 1 guarantees that marginals in each
subnetwork are exact. In general, when many edges are
deleted, a network N ′ satisfying Condition 1 may still be
a useful approximation; see Figure 2. Condition 1 is further
equivalent to local conditions on edge parameters:

θû = Pr
′(u | e′ \ ŝ) (1)

θŝ|u = Pr
′(e′ | û). (2)

These local conditions can also be used as update equations
in an iterative fixed-point procedure (also called ED-BP) to
search for parameters satisfying Condition 1. Starting with
an initial approximationN ′

0
at iteration 0 (say, with uniform

parameters), we can compute edge parameters θt
û and θt

ŝ|u

for an iteration t > 0 by performing exact inference in the
simplified network N ′

t−1
. We can repeat this process until

all edge parameters converge (if ever) to a fixed point satis-
fying Equations 1 and 2, and thus Condition 1.

Finally, message passing by IBP in N corresponds to
edge parametrization by ED-BP inN ′, in the degenerate case
where every edge has been deleted in N ′. Moreover, the
IBP approximations of node marginals inN correspond pre-
cisely to the marginals Pr

′(X|e′) computed exactly in N ′.
This correspondence to IBP continues to hold, in fact, for all
polytree approximationsN ′; cf. (Wainwright, Jaakkola, and
Willsky 2003). When N ′ is multiply-connected (i.e., has
undirected cycles), then ED-BP induces a class of GBP ap-
proximations.1 Therefore, by choosing edges to delete, we
implicitly choose also the structure of a GBP approximation.

1An ED-BP approximation N ′ corresponds to an instance of
GBP run with a particular joingraph (Choi and Darwiche 2006;
Aji and McEliece 2001; Dechter, Kask, and Mateescu 2002).



Deleting a Single Edge

Suppose now we are given a Bayesian network N , and we
are interested in approximating the marginal distribution of
a target variable Q, by computing it in an ED-BP approxi-
mation N ′. For simplicity, suppose that Q is binary, i.e., Q
takes on either the state q or the state q̄.2 For variable Q and
state q, we may simply refer to the event Q = q as q, and
hence refer to Pr(Q = q|e) as simply Pr(q|e).

It will be convenient for us to think of the marginal distri-
bution Pr(Q|e), conditioned on evidence e, in terms of the
odds of an event Q = q:

O(q | e) =
Pr(q | e)

Pr(q̄ | e)
=

Pr(q | e)

1− Pr(q | e)
.

Similarly, let O′(q|e′) denote the odds of Q = q associ-
ated with the approximate distribution Pr

′(Q|e′). Note that
we can easily recover the probabilities Pr(q|e) and Pr(q̄|e)
given the odds O(q|e).

Consider then the simplified case where we have deleted
a single edge U → X . The question now is: under what
conditions are the odds O′(q|e′) exact? An ED-BP approxi-
mation yields the exact odds for all network variables when
deleting the single edge U → X splits the network into two
(due to Condition 1). This, however, is too strong of an as-
sumption when we are interested in only the odds O′(q|e′),
as a particular variable Q may be indifferent to the deletion
of the edge U → X (say if variable Q and edge U → X
were already disconnected).

To help us answer this question, we can examine the sim-
plified case where a single edge U → X is deleted, where
we can in fact express the error of the odds O′(q|e′) in terms
of the distribution induced by the approximate network N ′.

Lemma 1 If N ′ is an ED-BP approximation resulting from
the deletion of a single edge U → X from a Bayesian net-
work N , then the odds-error E = O′(q|e′)/O(q|e′) is

E =
Pr

′(q | e′)

Pr
′(q̄ | e′)

∑
u=û Pr

′(q̄ | uû, e′)Pr
′(u | û, e′)∑

u=û Pr
′(q | uû, e′)Pr

′(u | û, e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

∑
u=û Pr

′(q̄ | uû, e′)Pr
′(û | u, e′)∑

u=û Pr
′(q | uû, e′)Pr

′(û | u, e′)
.

Note that the above two equations differ only in the factors
Pr

′(u|û, e′) = Pr
′(û|u, e′). The proofs of this lemma, and

the subsequent propositions, appear in the appendix.

By specifying the odds-error E in terms of the approxi-
mate distribution Pr

′(.|e′) only, we can identify conditions
where deleting a single edge leads to the exact odds, but in
terms of independencies in the approximate network. For
example, we can find by inspection the independence condi-
tion in the following result yields an odds-error of one.

Proposition 1 IfN ′ is an ED-BP approximation that results
from deleting a single edge U → X from a Bayesian net-

work N , then (Q ⊥ U, Û | e′) implies O′(q|e′) = O(q|e).

2The results in this paper can easily be extended to the case of
variables Q with arbitrary arity.

Here, (Q ⊥ U, Û | e′) means that Q is independent of U

and Û , given evidence e′. This proposition says, roughly,
that if q is independent of the deleted edge U → X , then the
odds O′(q|e′) is exact. This is intuitive and expected. With
some simple manipulations, we can also find the following.

Proposition 2 IfN ′ is an ED-BP approximation that results
from deleting a single edge U → X from a Bayesian net-

work N , then (Q,U ⊥ Û | e′) or (Q, Û ⊥ U | e′) implies
O′(q|e′) = O(q|e).

In the following section, we propose a focused approach to
edge recovery that is inspired by these propositions.

Focused Edge-Recovery

We can simplify a model by deleting edges, until exact in-
ference is tractable. In turn, we can exploit the simpli-
fied network in order to find more structured, and hope-
fully more accurate, approximations. Indeed, (Choi and
Darwiche 2006) propose an approach that takes a polytree
approximation (corresponding to IBP), and recovers into it
those edges that are deemed important for an accurate ap-
proximation.

Let the mutual information between two disjoint sets of
variables X and Y, which we will compute in a simplified
network N ′, be defined as follows:

MI (X;Y|e′) =
∑

xy

Pr
′(xy|e′) log

Pr
′(xy|e′)

Pr
′(x|e′)Pr

′(y|e′)
.

Note that mutual information is non-negative, and zero iff X
and Y are independent given e′ (Cover and Thomas 1991).
Note further that the above mutual information is defined for
a distribution Pr

′(.|e) conditioned on evidence e.

We proposed in (Choi and Darwiche 2006) to recover
first those edges U → X with high mutual information

MI (U ; Û |e′). We can understand the rationale behind this
heuristic by considering again the case where deleting a sin-
gle edge U → X splits a network into two independent sub-

networks, where the mutual information MI (U ; Û |e′) hap-
pens to be zero. Since splitting a network into two leads to
exact odds for all variables, we may expect that recovering

edges with high values of MI (U ; Û |e′) may improve, glob-
ally, the quality of the approximation.

In contrast, Propositions 1 and 2 suggest query-specific
mutual information heuristics for deciding which edges to
recover. First, Proposition 1, which says that the odds of Q

are exact when (Q ⊥ U, Û | e′) in N ′, suggests that we
should recover those edges with the highest score:

s1 = MI (Q;UÛ | e′).

Second, Proposition 2, which says the odds of Q are exact

when either (Q,U ⊥ Û | e′) or (Q, Û ⊥ U | e′) in N ′,
suggests that we recover those edges with the highest scores:

s2 = MI (QU ; Û | e′)

s3 = MI (QÛ ;U | e′).
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Figure 3: A Bayesian networkN (left), a networkN ′ where
edges i and j have been deleted inN (center), and a network
N ′

i where edge i has been recovered back into N ′ (right).

Finally, since if any of the conditions given by Propositions 1
or 2 are satisfied, the odds O′(q|e′) are correct, we take the
minimum as a score to rank an edge U → X for recovery:

sij = min{s1, s2, s3}.

We then prefer to recover those edges U → X with the
highest scores sij . Note that although the scores s1, s2 and
s3 are symmetrical, the conditions on which they are based
on are independent, in the sense that one condition does not
imply another. Note also that in the case Q = U , the score

sij reduces to MI (U ; Û | e′), which is the score given to all
edges U → X in the (unfocused) edge-recovery heuristic
given by (Choi and Darwiche 2006).

Assuming we use a jointree-based algorithm for exact in-
ference in N ′, we can use the technique we described in
(Choi and Darwiche 2006), to compute all joint marginals
required for scoring edges. Let T be the number of tails
U in the set of edges deleted. To compute the unfocused

edge-recovery scores, requiring marginals Pr
′(UÛ |e′), we

require only O(T maxU |U |) jointree propagations. To com-
pute the focused edge-recovery scores, requiring marginals

Pr
′(QUÛ |e′), we require only O(|Q| · T maxU |U |) join-

tree propagations. Assuming that Q is binary, this is the
same complexity as the unfocused edge-recovery heuristic.

Odds Correction

Given the error E when deleting a single edge U → X ,
we can trivially correct the approximate odds O′(q|e′) to
the true odds: O′(q|e′) · E−1 = O(q|e). We now ask: can
we exploit this fact to improve our approximation O′(q|e′)
when more than one edge is deleted?

Say edges U
i
→X deleted in network N ′ are labeled with

indices i. Since Lemma 1 specifies the odds-error in terms of
the approximate distribution Pr

′(.|e′) only, we can compute

the correction factor E−1

i for a particular edge U
i
→X , even

when other edges have been deleted. Although this single
correction factor is insufficient to rectify the odds O′(q|e′)
to the odds O(q|e), it is sufficient to rectify the approximate
odds to the exact odds of Q in another network where the
single edge has been recovered.

Consider, for example, Figure 3, where we have deleted
edges from a network N . Using only the resulting net-

work N ′, we can compute the odds O′
i(q|e

′
i) of the hypo-

thetical network N ′
i where the single edge U

i
→X has been

recovered into N ′.3 In particular, we can apply the odds-
correction E−1

i = O′
i(q|e

′
i)/O′(q|e′) to the odds O′(q|e′).

As far as the target approximation O′(q|e′) is concerned, we

have effectively recovered the single edge U
i
→X back into

the approximation, but without the explicit construction of
another network N ′

i .
This suggests an edge-correction approach to approximat-

ing the odds O(q|e), where we collect single-edge correc-

tions E−1

i , and apply them to O′(q|e′) as if the corrections
were independent. In particular, we propose to accumulate

corrections multiplicatively across all edges U
i
→X deleted:

O′(q | e′) ·
∏

U
i
→X

E−1

i = O′(q | e′) ·
∏

U
i
→X

O′
i(q | e

′
i)

O′(q | e′)
. (3)

As we shall see in the following section, this simple edge-
correction scheme can be effective in improving the accu-
racy of an approximation for a targeted query O(q|e).

Note that both edge-correction and edge-recovery require

the computation of the joint marginals Pr
′(QUÛ | e′), thus

computing edge-recovery scores is computationally equiv-
alent to computing edge-correction factors. In edge recov-
ery, however, edges must then be recovered explicitly into
a more connected approximation, where inference can be-
come more difficult. In edge-correction, we only implicitly
recover substructure, and is thus a cheaper alternative to im-
proving a targeted odds-approximation.4

In Algorithm 1, we summarize the resulting approach to
computing odds-approximations, where we perform edge-
recovery, followed by edge-correction.

Empirical Results

We evaluate here the effectiveness of a focused approach
to edge recovery, in a selection of Bayesian networks.5 In
our experiments, we performed an adaptive edge recovery
procedure (Choi and Darwiche 2006), which is described in
Steps 1 to 7 of Algorithm 1. We rank edges deleted in Step 4
in three ways: randomly (for reference), by the unfocused
mutual information heuristic of (Choi and Darwiche 2006),
and by our focused heuristic. We also performed focused
edge-recovery, with and without edge-corrections. Our pri-
mary concern is the quality of approximations computed in

3We assume that when we recover this edge, all other edge pa-
rameters remain fixed. Note that network N ′ is an ED-BP approx-
imation (satisfying Condition 1), in both cases: (1) as the result of
deleting edges in N , and (2) as the result of deleting an edge in N ′

i .
4In principle, we could have proposed instead to approxi-

mate a target marginal Pr(q|e) as a ratio of two approximations
Pr

′

q(q, e
′) and Pr

′(e′) computed in two different ED-BP networks
N ′

q and N ′ (the former using new edge parameters found after con-
ditioning on Q = q). Although this approach may be worth explor-
ing, we consider it a nontrivial extension.

5Most of the networks used for our evaluation are available
at http://www.cs.huji.ac.il/labs/compbio/Repository/. Networks
emdec and tcc are noisy-or networks for diagnosis, courtesy of
HRL Laboratories, LLC.



Algorithm 1 EDGE-RECOVERY,EDGE-CORRECTION

input:
N : a Bayesian network
e: an instantiation of some variables in network N
q: target query q for variable Q in N

output: an approximation to the odds O(q | e′)

main:

1: Σ← edges to delete to render N a spanning polytree
2: N ′ ← ED-BP(N , e,Σ)
3: while recovery of edges in N ′ is feasible do
4: rank deleted edges U → X (given a heuristic)
5: Σ← Σ− {top k edges with the largest scores}
6: N ′ ← ED-BP(N , e,Σ)
7: end while
8: O′(q | e′)← odds of q computed in N ′

9: {Ei} ← odds-errors for edges Σ still deleted

10: return odds-correction O′(q | e′) ·
∏

i E−1

i

supporting function: ED-BP(N , e,Σ): returns ED-BP net-
work for network N , evidence e, with edges Σ deleted

the ED-BP network resulting in Step 6, or if edge-recovery
is not feasible, the edge-corrected approximation returned in
Step 10.

Each plot that we present corresponds to a particular
Bayesian network where edge recovery heuristics are evalu-
ated based on an average of at least 50 problem instances.
Each problem instance corresponds to observations e on
all leaves of the original network, whose values are sam-
pled from the original joint distribution (except for networks
emdec and tcc, where we set values on leaves at random
as the joint distribution is highly skewed). In all problem
instances, IBP converged to within an absolute difference of
10−8, in 200 iterations.

Consider then Figure 4, where each row corresponds to
a particular Bayesian network. We compare the number of
edges recovered (x-axis) versus the accuracy of marginal ap-
proximations (y-axis). We measured the error of a marginal
by maxq |Pr

′(q|e′) − Pr(q|e)| (we assume in our experi-
ments that q is of arbitrary arity, not just binary). In the left
column of Figure 4, we report the average marginal error of
a target variable Q, which we picked as the variable with the
largest marginal error in an IBP approximation (computed
beforehand). On the right column, we report the average
marginal error over all unobserved variables, whether it was
the target or not. As we move from left-to-right on the x-
axis, we move from the case where no edge is recovered
(corresponding to IBP) to the case where all edges are re-
covered (corresponding to exact inference), recovering 1

8
-th

of the edges at a time. In networks barley and mildew
however, which are relatively more challenging to evaluate,
we recover only 25% of the edges, 1

16
-th of the edges at a

time.

In all plots, both recovery heuristics produced on aver-
age more accurate marginals than random recovery. On
the left column, where we compare average marginal er-
ror for the target variable only, focused recovery (FOCUS)

0 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

edges recovered

alarm (target var)

random
MI
focus
focus+EC

0 10

1

2

3

4

5

x 10
−3

edges recovered

alarm (all vars)

random
MI
focus

0 94

0.02

0.04

0.06

0.08

edges recovered

emdec (target var)

random
MI
focus
focus+EC

0 94

1

2

3

4

x 10
−3

edges recovered

emdec (all vars)

random
MI
focus

0 90

0.05

0.1

0.15

edges recovered

tcc (target var)

random
MI
focus
focus+EC

0 90

0.005

0.01

0.015

0.02

edges recovered

tcc (all vars)

random
MI
focus

0 152

0.02

0.04

0.06

0.08

0.1

0.12

0.14

edges recovered

a
v
e
ra

g
e
 e

rr
o
r

pigs (target var)

random
MI
focus
focus+EC

0 152

2

4

6

8

10

12

x 10
−3

edges recovered

a
v
e
ra

g
e
 e

rr
o
r

pigs (all vars)

random
MI
focus

0 10
0.15

0.2

0.25

0.3

edges recovered

barley (target var)

0 10

0.04

0.045

0.05

0.055

edges recovered

barley (all vars)

0 3

0.05

0.06

0.07

0.08

edges recovered

mildew (target var)

0 3

0.009

0.01

0.011

0.012

0.013

0.014

0.015

edges recovered

mildew (all vars)

Figure 4: [The Effectiveness of Focused Approximations].
Left: Average marginal error for the target variable Q.
Right: Average marginal error, averaged over all variables.
In all plots, the y-axis is average error.



produced consistently better approximations than unfocused
recovery (MI) for all networks but the mildew network,
where they were not well distinguishable. This improve-
ment was modest in some cases, but we believe the separa-
tion is sufficient to justify the usage of a focused heuristic
over an unfocused one, as FOCUS requires essentially the
same time complexity as MI (as we discussed when we intro-
duced the focused heuristic). For focused recovery, we fur-
ther computed edge-corrections (FOCUS+EC) which, as we
discussed in the previous section, is computationally equiva-
lent to computing edge recovery scores, yet does not require
us to actually recover edges. We see here consistent im-
provement over focused recovery alone, giving us another
layer of improvement over unfocused recovery. Moreover,
FOCUS+EC yielded significant improvements in approxima-
tion quality for the pigs and mildew networks, without
recovering any edges.

On the right column of Figure 4, where we compared ap-
proximation quality based on average error over all vari-
ables, we found that, not surprisingly, the unfocused MI

heuristic (which targets all variables) typically produced as
good, or better, approximations. Indeed, it would be unusual
if the focused heuristic consistently led to better marginals
for untargeted variables.

Related Work

Several generalizations of belief propagation have been pro-
posed with the increased interest in IBP, perhaps the most
notable being the Generalized Belief Propagation (GBP) al-
gorithms (Yedidia, Freeman, and Weiss 2005). Although
the structure of a GBP approximation, typically specified
via an auxiliary graph, is key to the quality of the approx-
imation, relatively little attention has been spent in iden-
tifying good structures, much less those that are focused
on a particular variable of interest. While some proper-
ties have been suggested as desirable for the structuring of
GBP approximations (Yedidia, Freeman, and Weiss 2005;
Welling, Minka, and Teh 2005), we are only aware of
the region pursuit algorithm (for identifying region graphs)
(Welling 2004), and the original edge recovery heuristic
(which implicitly identifies a joingraph) (Choi and Darwiche
2006), for systematic and query-specific approaches to iden-
tifying structure. Neither, however, targets a variable of in-
terest.

(Rosales and Jaakkola 2005) also considers a notion of
focused approximations, in the sense that variable (bucket)
elimination is a query-specific form of exact inference
(Zhang and Poole 1996; Dechter 1996). Indeed, it is sim-
ilar in spirit to mini-bucket elimination (Dechter and Rish
2003), where simplifications are performed during the pro-
cess of variable (bucket) elimination. Our proposal for edge-
correction is similar in spirit to other methods based on re-
covering (implicitly) substructure, including sequential fit-
ting (Frey et al. 2000) (which, unlike edge-correction, is
sensitive to the ordering of individual corrections), and ex-
pectation propagation (EP) (Minka 2001) (which, unlike
edge-correction, could be considered a form of iterative cor-
rection). EP also characterizes IBP as a disconnected ap-

proximation, and is another distinguished class of GBP ap-
proximations (Welling, Minka, and Teh 2005).

While specific to ED-BP approximations, we expect that a
focused edge recovery approach can also be applied to tar-
geting approximations in other reasoning algorithms, par-
ticularly those that can be formulated as exact inference in
simplified models. These include, as we have shown here,
IBP and some of its generalizations (Yedidia, Freeman, and
Weiss 2005), but also mean-field variational methods (Jor-
dan et al. 1999; Wiegerinck 2000; Geiger, Meek, and Wexler
2006) and mini-bucket approximations (Dechter and Rish
2003; Choi, Chavira, and Darwiche 2007).

Conclusion

We have proposed here an approach to approximate infer-
ence that is based on focusing an approximation to a targeted
variable of interest. We proposed a focused edge recovery
approach, that begins with a polytree approximation, labels
each deleted edge with a query-specific score, and recovers
into it those edges with the highest score. The focused edge
recovery scores are based on conditions that we identified
that led to an exact odds-approximation for a targeted vari-
able, in the case where a single edge is deleted. We further
identified the odds-error in this simplified case, which led
also to an edge-correction scheme that is cheaper than edge
recovery for focused approximations. Experimentally, we
found that both approaches to focused approximations are
more effective than an unfocused approach.
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Proofs

Proof of Lemma 1 It suffices to show that

Pr(q | e) ∝
∑

u=û

Pr
′(q | uû, e′)Pr

′(u | û, e′). (4)

First, note that if an edge U → Û , representing an equiva-
lence constraint, is recovered into N ′ (dropping only auxil-

iary variable Ŝ) the probability of evidence is equivalent to
that of the original network N . Assuming this recovery:

Pr(e) =
∑

u=û

Pr(uû, e) =
∑

u=û

∂Pr(e)

∂θû|u
=

∑

u=û

∂2
Pr

′(e′)

∂θû∂θŝ|u

=
∑

u=û

Pr
′(uû, e′)

θûθŝ|u
∝

∑

u=û

Pr
′(uû, e′)

Pr
′(û, e′)

. (5)

The last equality follows from the fact that:

θûθŝ|u ∝ θû

∂Pr
′(e′)

∂θû

= Pr
′(û, e′),

using ED-BP fixed-point condition θŝ|u = ∂Pr
′(e′)/∂θû,

which is equivalent to the one given in (Choi and Darwiche
2006). Conditioning on Q = q as evidence leads to the de-
sired result. The second equality of Lemma 1 follows from
Equation 5 by noting that Pr

′(û|e′) = Pr
′(u|e′) in an ED-

BP approximation; see Condition 1. �



Proof of Proposition 1 Assuming (Q ⊥ U, Û | e′),

E =
Pr

′(q | e′)

Pr
′(q̄ | e′)

∑
u=û Pr

′(q̄ | uû, e′)Pr
′(u | û, e′)∑

u=û Pr
′(q | uû, e′)Pr

′(u | û, e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

∑
u=û Pr

′(q̄ | e′)Pr
′(u | û, e′)∑

u=û Pr
′(q | e′)Pr

′(u | û, e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

Pr
′(q̄ | e′)

∑
u=û Pr

′(u | û, e′)

Pr
′(q | e′)

∑
u=û Pr

′(u | û, e′)

which is simply one. �

Proof of Proposition 2 Assuming (Q,U ⊥ Û | e′),

E =
Pr

′(q | e′)

Pr
′(q̄ | e′)

·

∑
u=û Pr

′(q̄ | uû, e′)Pr
′(u | û, e′)∑

u=û Pr
′(q | uû, e′)Pr

′(u | û, e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

·

∑
u=û Pr

′(q̄u | û, e′)∑
u=û Pr

′(qu | û, e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

·

∑
u Pr

′(q̄u | e′)∑
u Pr

′(qu | e′)

=
Pr

′(q | e′)

Pr
′(q̄ | e′)

·
Pr

′(q̄ | e′)

Pr
′(q | e′)

= 1.

Assuming (Q, Û ⊥ U | e′), and using the second equality
of Lemma 1, we can find similarly that again E = 1. �
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