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Abstract

We show in this paper that the influential algorithm of
iterative belief propagation can be understood in terms
of exact inference on a polytree, which results from
deleting enough edges from the original network. We
show that deleting edges implies adding new parameters
into a network, and that the iterations of belief prop-
agation are searching for values of these new parame-
ters which satisfy intuitive conditions that we character-
ize. The new semantics lead to the following question:
Can one improve the quality of approximations com-
puted by belief propagation by recovering some of the
deleted edges, while keeping the network easy enough
for exact inference? We show in this paper that the an-
swer is yes, leading to another question: How do we
choose which edges to recover? To answer, we propose
a specific method based on mutual information which
is motivated by the edge deletion semantics. Empiri-
cally, we provide experimental results showing that the
quality of approximations can be improved without in-
curring much additional computational cost. We also
show that recovering certain edges with low mutual in-
formation may not be worthwhile as they increase the
computational complexity, without necessarily improv-
ing the quality of approximations.

Introduction

The complexity of algorithms for exact inference on graph-
ical models is generally exponential in the model treewidth
(Jensen, Lauritzen, & Olesen 1990; Lauritzen & Spiegel-
halter 1988; Zhang & Poole 1996; Dechter 1996; Darwiche
2001). Therefore, models with high treewidth (and no lo-
cal structure, Chavira & Darwiche 2005) can be inaccessi-
ble to these methods, necessitating the use of approximate
algorithms. Iterative Belief Propagation (IBP), also known
as Loopy Belief Propagation (Pearl 1988; Murphy, Weiss,
& Jordan 1999), is one such algorithm that has been crit-
ical for enabling certain classes of applications (e.g., Frey
& MacKay 1997), which have been intractable for exact
algorithms. We propose in this paper a new perspective
on this influential algorithm, viewing it as an exact infer-
ence algorithm on a polytree approximation of the original
network. The approximate polytree results from deleting
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Figure 1: A network (left), a polytree approximation (cen-
ter), and a more structured approximation (right).

enough edges from the original network, where the loss of
each edge is offset by introducing free parameters into the
approximate network. We show that the iterations of be-
lief propagation can be understood as searching for values
of these free parameters that satisfy intuitive conditions that
we formally characterize.

This edge deletion semantics of IBP leads to a number
of implications. On the theoretical side, it provides a new,
intuitive characterization of the fixed points of IBP. On the
practical side, it leads to a concrete framework for improv-
ing the quality of approximations returned by IBP. In par-
ticular, since IBP corresponds to deleting enough edges to
yield a polytree, one wonders whether recovering some of
the deleted edges can improve the quality of approximations;
see Figure 1. The answer is yes, as we show later. Indeed,
the edge recovery proposal can be quite practical if it leads
to a multiply connected network that is still feasible for ex-
act inference. This leads to another question: What edges
are the most promising to recover? For this, we appeal to
the semantics of edge deletion which suggest a criterion for
recovering edges based on mutual information. We discuss
the properties of this recovery method and provide empiri-
cal results, showing how it can identify a small set of edges
that can effectively improve the quality of approximation
without impacting much the complexity of inference. Our
method also identifies edges whose recovery may increase
inference complexity, without having a justifiable impact on
the quality of approximations.

This paper is structured as follows. First, we start by for-
malizing approximate inference as exact inference on an ap-



U

X

U

X

PM(U’)

SE(U)

U’

S’

Figure 2: Deleting edge U → X by adding a clone U ′ of U
and binary evidence variable S′.

proximate network which results from deleting edges. Sec-
ond, we show how the deletion of edges introduces addi-
tional network parameters and propose a probabilistic se-
mantics for choosing the values of these parameters. Third,
we propose an iterative method for computing the charac-
terized parameters, and show how belief propagation corre-
sponds to the proposed framework when enough edges are
deleted to yield a polytree. Fourth, we propose a criterion
for recovering some of the original network edges, leading
to an approximate network that is multiply connected. We
finally present various empirical results to evaluate the edge
recovery technique and discuss related work. Proofs for the-
orems appear in the Appendix.

Deleting a Directed Edge

Let U → X be an edge in a Bayesian network, and suppose
that we wish to delete this edge to make the network more
amenable to exact inference algorithms. This deletion will
introduce two problems. First, variable X will lose its direct
dependence on parent U . Second, variable U may lose evi-
dential information received through its child X . To address
these problems, we propose to add two auxiliary variables
for each deleted edge U → X as given in Figure 2. The
first is a variable U ′ which is made a parent of X , therefore
acting as a clone of the lost parent U . The second is an in-
stantiated variable S′ which is made a child of U , meant to
provide evidence on U in lieu of the lost evidence.1 Note
that auxiliary variable U ′, as a clone, has the same values as
variable U . Moreover, auxiliary variable S′ is binary as it
represents evidence.

The deletion of an edge U → X will then lead to intro-
ducing new parameters into the network, as we must now
provide conditional probability tables (CPTs) for the new
variables U ′ and S′. Variable U ′, a root node in the net-
work, needs parameters θu′ representing the prior marginal
on variable U ′. We will use PM (U ′) to denote these pa-
rameters, where PM (u′) = θu′ . Variable S′, a leaf node
in the network, needs parameters θs′|u representing the con-

ditional probability of s′ given U . We will use SE (U) to
denote these parameters, where SE (u) = θs′|u. Moreover,

we will refer to PM (U ′) and SE (U) as edge parameters.

1Our proposal for deleting an edge is an extension of the pro-
posal given by (Choi, Chan, & Darwiche 2005), who proposed the
addition of a clone variable U

′ but missed the addition of evidence
variable S

′.

Figure 3 depicts a simple network with a deleted edge, to-
gether with one possible assignment of the corresponding
edge parameters.

We have a number of observations about our proposal for
deleting edges:

• The extent to which this proposal is successful will de-
pend on the specific values used for the parameters intro-
duced by deleting edges. This is a topic which we address
in the following section.

• If the deleted edge U → X splits the network into two
disconnected networks, one can always find edge param-
eters which are guaranteed to lead to exact computation
of variable marginals on both sides of the deleted edge;
see Lemma 1 in the Appendix.

• The auxiliary variable S′ can be viewed as injecting a soft
evidence on variable U , whose strength is defined by the
parameters SE (U). See the Appendix for some important
observations on soft evidence and its properties. In partic-
ular, for queries that are conditioned on evidence s′, only
the relative ratios of parameters SE (U) matter, not their
absolute values.

Parametrizing Deleted Edges: ED-BP

Given a network N and evidence e, our proposal is then to
approximate this network with another N ′ that results from
deleting some number of edges U → X as given earlier.
Moreover, when performing inference on network N ′, we
will condition on the augmented evidence e

′ composed of
the original evidence e and each piece of auxiliary evidence
s′ introduced when deleting edges. More formally, if Pr and
Pr

′ are the distributions induced by networks N and N ′, re-
spectively, we will use the conditional distribution Pr

′(.|e′)
to approximate Pr(.|e).

We cannot commence with the above proposal, however,
without first specifying the parameters PM (U ′) and SE (U)
for each deleted edge U → X . There are two issues here.
First, what parameters should we seek? Second, how do
we compute them? As to the first question, a number of
reasonable proposals can be extended, including the one for
minimizing the KL–divergence between the original and ap-
proximate networks (Choi & Darwiche 2006). However, we
propose to choose a less expensive criterion here, which has
interesting properties. In particular, for each deleted edge
U → X , we require the following consistency conditions:

Pr
′(u|e′) = Pr

′(u′|e′), (1)

Pr
′(u|e′ \ s′) = Pr

′(u′). (2)

Condition 1 says that variables U ′ and U should have the
same posterior marginals. This condition is mandated by
the semantics of auxiliary variable U ′, which say that U ′ is
a clone of variable U . Condition 2 is perhaps less obvious
and best understood in the special case where deleting the
edge U → X splits the network into two disconnected com-
ponents, one containing U (the U–component) and the other
containing X (the X–component). In this case, all evidence
in the X–component will be disconnected from variable U .
Condition 2 is then meant to ensure that this lost evidence is
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Figure 3: A network N (left), an approximate network N ′ found after deleting A → B (center), along with parameters for
auxiliary evidence variable S′ and clone A′ (right).

compensated for by the auxiliary evidence s′. In particular,
Condition 2, in light of Condition 1, says that the impact of
evidence s′ on variable U is equivalent to the impact of all
evidence on its clone U ′:

Pr
′(u|e′)

Pr
′(u|e′ \ s′)

=
Pr

′(u′|e′)

Pr
′(u′)

.

Assuming that an edge splits the network, only evidence in
the X–component will have an impact on clone U ′. Hence,
in this case, the auxiliary evidence s′ does indeed summarize
the effect of all evidence in the X–component.

Continuing with the assumption that an edge splits the
network, it is interesting to note that the suggested condi-
tions lead to exact results for marginals in the disconnected
components. However, they will not necessarily lead to cor-
rect marginals over variable sets that cross components (see
Lemma 1 in Appendix). Hence, these conditions lead to ex-
act marginals over single variables when the deleted edge
splits the network. If the edge does not split the network,
not all evidence connected to X will be disconnected from
U . Hence, Condition 2 can be seen as overcompensating.
It is indeed this observation which will be the basis of our
heuristic for recovering edges, to be discussed later. Further,
we will show that the stated conditions characterize the fixed
points of IBP (and some of its generalizations) on Bayesian
networks.

The question remains: How do we compute a
parametrization which satisfies the above conditions? The
following theorem provides an answer.

Theorem 1 Let N be a Bayesian network and N ′ be the re-
sult of deleting edges U → X from N . Conditions 1 and 2
hold in network N ′ iff its edge parameters satisfy the follow-
ing conditions:

PM (u′) = Pr
′(u|e′ \ s′), (3)

SE (u) = αPr
′(e′|u′), (4)

where α is a constant > 0.

Theorem 1 then suggests the following iterative method for
identifying edge parameters. First, we start with a network
N ′

0
with a corresponding distribution Pr

′
0
, where all edge

parameters PM
0(U ′) and SE

0(U) are initialized uniformly.
For each iteration t > 0, the parameters for edges in N ′

t will
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Figure 4: Correspondence between message passing in IBP
and parameter updates in ED-BP.

be determined by performing exact inference on the approx-
imate network N ′

t−1
(from the previous iteration):

PM
t(u′) = Pr

′
t−1

(u|e′ \ s′), (5)

SE
t(u) = αPr

′
t−1

(e′|u′), (6)

where α > 0 (we use α that normalizes SE
t(U)). We then

keep iterating until all edge parameters converge to a fixed
point (if ever).

We refer to the above method as ED-BP, an iterative
method for parametrizing edge deletions based on belief
propagation.2 To justify the name, we will show that ED-
BP subsumes IBP. In particular, for an edge U → X and an
iteration t, we will use πt

X(U) to denote the message passed
by IBP from parent U to child X , and λt

X(U) to denote the
message passed from child X to parent U .

Theorem 2 Let N be a Bayesian network and N ′ be the
result of deleting every edge from N . Suppose we run IBP on

N and ED-BP on N ′, where initially all π0

X(U) = PM
0(U ′)

and all λ0

X(U) = SE
0(U). Then, for each edge U → X

and each iteration t, we have:

• πt
X(U) = PM

t(U ′);

• λt
X(U) = SE

t(U).

Moreover, for all variables X in N and each iteration t, we
have BELt(X|e) = Pr

′
t(X|e′).

2See (Choi & Darwiche 2006) for a companion method, ED-KL,
which is based on minimizing the KL–divergence.



This correspondence, depicted in Figure 4, shows that IBP
is indeed searching for the edge parameters of an approx-
imate, polytree network N ′ obtained by deleting all edges
from N . We note here that there is a spectrum of approxi-
mate networks that are polytrees, ranging from the polytree
that has no edges (call it the minimal polytree), all the way to
polytrees whose edges form a spanning tree of the network
variables (call them maximal polytrees). The following the-
orem relates these different polytrees.

Theorem 3 Let N be a Bayesian network, N ′
m be the re-

sult of deleting every edge from N , and N ′ be the result of
deleting enough edges from N to yield a polytree. For ev-
ery edge parametrization of N ′

m that satisfies Conditions 1
and 2, there is an edge parametrization of N ′ that also sat-
isfies these conditions and that leads networks N ′

m and N ′

to agree on node marginals.

That is, running ED-BP on the minimal polytree network ver-
sus a maximal one (or any approximation in between) yields
the same approximations for node marginals. More pre-
cisely, it can be shown that the only difference between these
approximate networks is that they lead to different message
passing schedules in IBP. In particular, the minimal poly-
tree approximation corresponds to a parallel message pass-
ing schedule, while maximal polytree approximations cor-
respond to sequential schedules (Wainwright, Jaakkola, &
Willsky 2003; Tappen & Freeman 2003).

It is important to note, however, that running ED-BP on
more connected polytrees can yield more accurate approx-
imations for marginals over multiple nodes. In general,
computing such marginals is outside the scope of IBP, yet
we will find joint marginals useful in the following section,
when we recover deleted edges. We will therefore assume a
maximal polytree approximation unless stated otherwise.

Deciding Which Edges to Recover
Suppose we already have a polytree approximation of the
original network, but we are afforded more computational
resources. We can then relax the approximation by recov-
ering some of the deleted edges. However, which edge’s re-
covery would have the most positive impact on the quality of
the approximation? Alternatively, we can ask: which edge’s
deletion had the most negative impact in the current approx-
imation? To answer this question, let us consider again Con-
ditions 1 and 2 which characterize the edge parameters that
ED-BP searches for. Condition 1 requires that variable U and
U ′ agree. Condition 2, given Condition 1, says that the soft
evidence s′ on variable U should summarize all evidence e

′

on its clone U ′. This is meant to compensate for edge dele-
tion which potentially disconnects the evidence now pertain-
ing to U ′ which formerly pertained to U . If all such evidence
becomes disconnected from U , then Condition 2 is perfectly
reasonable. However, if some of the evidence pertaining to
U ′ remains connected to U in the approximate network, then
the soft evidence on U may be overcompensating. One way
to measure the extent of this overcompensation is through
the mutual information between U and U ′:

MI (U ;U ′|e′) =
∑

uu′

Pr
′(uu′|e′) log

Pr
′(uu′|e′)

Pr
′(u|e′)Pr

′(u′|e′)
.

Algorithm 1 Static Edge Recovery (ER+S)

1: Given network N , find a maximal polytree NBP em-
bedded in N ; Run ED-BP on NBP .

2: Rank deleted edges U → X based on MI (U ;U ′|e′).
3: Recover the top k edges into NBP , yielding network

N ′; Run ED-BP on N ′.

If deleting U → X splits the network into two disconnected
subnetworks, then their mutual information is zero. Since
edge deletion leads to exact results in this case, there is no
point of recovering the corresponding edge. On the other
hand, if MI (U ;U ′|e′) is large, the interaction between U
and its clone U ′ is strong in the approximate network and,
hence, the soft evidence on U may be overcompensating.
Edge deletion may have therefore degraded the quality of
our approximations, leading us to favor the recovery of such
edges.

Algorithm 1 summarizes our proposal for edge recovery,
which we refer to as ER+S. In Step 1, we choose an initial
network NBP based on a maximal polytree embedded in the
given network N , and run ED-BP to parametrize the deleted
edges. In Step 2, we use the approximate network computed
in Step 1 to compute the joint marginals Pr

′(uu′|e′) needed
for the mutual information scores. We finally recover the
top k edges in Step 3 and run ED-BP again on a more con-
nected network N ′ to obtain more accurate approximations.
In principle, we could repeat Steps 2 and 3 in an adaptive
process, recovering in Step 3 a smaller number of edges and
then re-ranking edges based on the improved approximation.
We will refer to this method as ER+A and show in the follow-
ing section that a static ranking, as used in ER+S, can often
achieve similar performance even though it is less costly to
compute.

Note that our heuristic requires the computation of joint
marginals on pairs of variables, which are needed for ob-
taining the mutual information scores. Consider the fact
that Pr

′(uu′|e′) = Pr
′(u′|u, e′)Pr

′(u|e′). We can score
all edges outgoing from a particular node U by applying ex-
act inference to a polytree NBP once for each state u of U :
simply assert each state u as evidence and retrieve the node
marginals Pr

′(u′|u, e′). In this manner, Step 2 requires that
we run the polytree algorithm as many times as there are
instances u of all tails U . If each variable has a constant
number of values, and we have n nodes in the network, then
the number of runs needed is O(n),

Experimental Results

We start by observing the extent to which edge recovery im-
proves the quality of approximations given by IBP, as mea-
sured by the average KL–divergence between exact and ap-
proximate marginals of unobserved variables.

Consider Figure 5, which depicts the improved approxi-
mations for the pigs and hailfinder networks.3 The x–axes
of these figures correspond to the number of edges recov-

3Most of the networks used for evaluation are available at
http://www.cs.huji.ac.il/labs/compbio/Repository/.
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Figure 5: Quality of approximation vs edges recovered.

ered, starting from no edges recovered (a polytree approxi-
mation/IBP) to all edges recovered (original network/exact
inference). Each point in these graphs is an average of 200
evidence instances, each fixing all leaf nodes according to
the joint. All instances converged within 500 iterations,
where convergence was determined when every parameter
of an iteration is within 10−8 of the previous.

In these plots, we compared IBP and our edge recov-
ery algorithm. We determined initial polytrees randomly,
and used a jointree algorithm for exact inference in ED-
BP. We then compared recovering edges with static rankings
(ER+S), adaptive rankings (ER+A), and randomly. Further,
we reversed the rankings (recovering edges with the lowest
mutual information) for the non-random cases (ER-S, ER-A).
In Figure 5, we see that in the pigs and hailfinder networks,
static ranking performs closely to the more computationally
intensive adaptive ranking. Moreover, in the pigs network,
where we recovered edges in sets of five, we see substantial
improvements in quality after only a few sets of edges are
recovered. In the hailfinder network, where we recovered
edges one at a time, the improvement is more modest. We
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can also see based on the reversed rankings that a substantial
number of edges can be recovered without much benefit.

Consider Figure 6, which shows approximation quality
and rates of convergence in the water network, where edges
were recovered one at a time, and where we see a separation
between static and adaptive ranking. For all ranking meth-
ods, we also see that the rate of convergence tends to im-
prove linearly as more edges are recovered. It is important
to note here that when recovering edges, we may increase
network complexity, but we may also reduce convergence
time. Hence, one must factor both issues when evaluating
the costs incurred when recovering edges.

Figure 7 shows an interesting phenomena, where all rank-
ing methods lead to better inference time over IBP when a
small number of edges is recovered! This is due to two fac-
tors. First, the complexity of the jointree algorithm would
often increase only gradually when recovering a small num-
ber of edges. Second, the improved convergence time may
offset this increase in complexity, leading to better overall
running time. A more detailed running time comparison is
given in Table 1, which depicts the running times of our edge
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network Step 1 Step 2 Step 3 Total

pigs 1.778s 1.407s 1.452s 4.637s

hailfinder 0.078s 0.062s 0.074s 0.214s

water 0.278s 0.549s 0.235s 1.062s

Table 1: Average ER+S time spent at each step.

recovery method in its three stages, after recovering roughly
10% of the candidate edges.4 Note that Step 1 corresponds
to the running time of IBP, and Step 3 corresponds (roughly)
to deleting edges randomly (no edge ranking is needed).

Table 2 summarizes the performance in these, and a few
other networks, including a random 8 × 8 grid. Overall, we
have observed that the quality of ED-BP approximations and
rates of convergence tend to improve over IBP as more edges
are recovered. Moreover, when we make a conscious choice
in edges to recover, we can effectively improve the observed
quality over random recovery, and further from IBP. Al-
though our averages suggest a monotonic improvement in
quality and convergence as more edges are recovered, we
have indeed observed infrequent instances where recovering

4Data collected on an Intel Xeon 1.50GHz CPU.

0% 10% recovered 50% recovered

network IBP random ER+S random ER+S

pigs 5.31e-3 4.82e-3 2.21e-3 2.73e-3 7.88e-4

hailfinder 3.42e-5 3.26e-5 2.97e-5 2.20e-5 1.17e-5

water 2.62e-4 2.57e-4 2.03e-4 2.08e-4 1.40e-4

win95pts 7.77e-3 7.77e-3 3.05e-3 5.18e-3 1.73e-3

8 × 8 grid 4.14e-5 4.00e-5 2.61e-5 2.85e-5 1.65e-5

Table 2: KL–divergence after recovering % of edges.

some edges has worsened both approximation quality and
the convergence rate.

Related Work

Iterative/loopy belief propagation has received a good deal
of interest over the years as an approximate inference al-
gorithm, particularly since revolutionary decoders for error
correction have been shown to be instances of this algorithm
(Frey & MacKay 1997). A number of formulations, gen-
eralizations, and alternatives to IBP have since been pro-
posed (for references, see Yedidia, Freeman, & Weiss 2005).
For example, similar characterizations of IBP also arise
in expectation propagation (EP) (Minka 2001), where IBP
corresponds to a disconnected network, and in tree-based
reparametrizations (TRP) (Wainwright, Jaakkola, & Willsky
2003) where IBP corresponds to trees embedded in a com-
plete re-parametrization of a distribution.

Among generalizations of IBP, those most relevant to
edge deletion are perhaps generalized belief propagation
(GBP) algorithms (Yedidia, Freeman, & Weiss 2005), to
which EP and TRP also closely relate (Welling, Minka, &
Teh 2005; Wainwright, Jaakkola, & Willsky 2003). Whereas
IBP passes messages along edges in a network N , GBP
algorithms pass messages according to an auxiliary struc-
ture composed of regions of N , where larger regions pro-
vide more accurate approximations. We sketch in the ap-
pendix how ED-BP can be simulated by a particular class of
GBP algorithms based on joingraphs (Aji & McEliece 2001;
Dechter, Kask, & Mateescu 2002). Therefore, our method
identifies a new subclass of GBP, whose fixed points cor-
respond to specific Bayesian networks N ′ that approximate
the original network N , and further whose semantics rely on
more fundamental terms in graphical models.

Among generalizations of IBP, the design of approximat-
ing structures has received considerably less attention. The
only proposal that the authors are aware of for the system-
atic design of approximations for IBP generalizations is the
region pursuit algorithm for GBP (Welling 2004), which
starts with an IBP approximation, identifies good candidates
among a given set of proposed regions, and uses local mes-
sage propagations to evaluate those that should be added to
the approximation.

Conclusion

We have proposed a method for approximate inference in
Bayesian networks, which reduces the problem into one
of exact inference on an approximate network obtained by
deleting edges. We have shown how the influential IBP al-
gorithm corresponds to an instance of our framework, where
one deletes enough edges from the network to render it a
polytree. The proposed framework and its subsumption of
IBP leads to a number of theoretical and practical impli-
cations that we explored in this paper. On the theoretical
side, our method leads to a new characterization of the fixed
points of IBP. On the practical side, it leads to a practical
method for improving the quality of IBP approximations by
recovering those edges whose deletion is expected to worsen
the quality of approximation the most.
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Appendix: Proof Sketches and Other Results

Proof of Theorem 1

PM (u′) parametrizes U ′, so Equations 2 and 3 imply each
other. Then we need to show that Equations 1 and 2 imply 4
and that Equations 3 and 4 imply 1. Note that given U , vari-
able S′ ∈ E

′ is independent of every other variable. Then
from Equation 1 we have:

Pr
′(u′|e′) = Pr

′(u|e′)

⇐⇒ Pr
′(u′

e
′) = Pr

′(ue
′) = Pr

′(e′|u)Pr
′(u)

= Pr
′(s′|u)Pr

′(e′ \ s′|u)Pr
′(u)

= Pr
′(s′|u)Pr

′(u|e′ \ s′)Pr
′(e′ \ s′)

= θs′|uPr
′(u′)Pr

′(e′ \ s′) by Eq. 2 (3)

⇐⇒ θs′|u = Pr
′(u′

e
′)/[Pr

′(u′)Pr
′(e′ \ s′)]

= αPr
′(e′|u′),

which is Equation 4, where α = [Pr
′(e′ \ s′)]−1. �

Proof of Theorem 2

Suppose that the variable X in network N has parents Ui

and children Yj . Then X is the center of a star in N ′ whose
arms are auxiliary variables U ′

i and S′
j introduced by delet-

ing edges Ui → X and X → Yj , respectively. At iteration

t, let PM
t
i(U

′
i) parametrize U ′

i and SE
t
j(X) parametrize S′

j .
We first show by induction that for edges X → Yj , we have

πt
Yj

(X) = PM
t
j(X

′), for all iterations t. Iteration t = 0 is

given. Now assume for notation that all evidence e is virtual
in N , and that the evidence in the star of X in N ′ is e

′
X .

Then for any t > 0, we have:

PM
t
j(x

′) = Pr
′
t−1

(x|e′ \ s′j) = Pr
′
t−1

(x|e′X \ s′j)

= αPr
′
t−1

(xe
′
X \ s′j) = α

∑

u
′

Pr
′
t−1

(xu
′
e
′
X \ s′j)

= α
∑

u
′

θx|u′

∏

u′

i
∼u

′

θt−1

u′

i

∏

s′

k
∼e

′

X
\s′

j

θt−1

s′

k
|x

= α
∑

u
′

θx|u′

∏

u′

i
∼u

′

PM
t−1

i (u′
i)

∏

k 6=j

SE
t−1

k (x)

= α
∑

u

θx|u

∏

ui∼u

πt−1

X (ui)
∏

k 6=j

λt−1

Yj
(x) = πt

Yj
(x),

The other correspondences follow similarly. �

Splitting a Network into Two Subnetworks

Lemma 1 Let N be a Bayesian network and N ′ be the re-
sult of deleting an edge U → X that splits N into two
disconnected subnetworks NU containing U and NX con-
taining X . Let XU be the variables of subnetwork NU and
XX be the variables of subnetwork NX . If the parameters
PM (u′) and SE (u) are determined by ED-BP in N ′, then

the marginal distributions for each approximate subnetwork
are exact:

Pr
′(XU |e

′) = Pr(XU |e), Pr
′(XX |e′) = Pr(XX |e).

Proof Let uveU be an instantiation of variables and evi-
dence in the set XU , and let xeX be an instantiation of
variables and evidence in the set XX (and thus xuve is a
complete instantiation in N ). Since Pr(xU |e) = Pr(uv|e)
and Pr

′(xU |e
′) = Pr

′(uv|e′), we have:

Pr(uv|e) =
∑

x

Pr(xuv|e) ∝
∑

x

Pr(xuve)

=
∑

x

Pr(xeX |uveU )Pr(uveU )

=
∑

x

Pr(xeX |u)Pr(uveU ) = Pr(eX |u)Pr(uveU )

= Pr
′(eX |u′)Pr

′(uveU ) ∝ θs′|uPr
′(uveU )

= Pr
′(uvs′eU ) ∝ Pr

′(uv|s′eU ) = Pr
′(uv|e′).

Similarly, to show Pr(XX |e) = Pr
′(XX |e). �

Note again that when deleting U → X splits N into
two subnetworks, we do not not necessarily have correct
marginals over variables that cross components.

Proof of Theorem 3

Consider a minimal polytree network N ′
m that has been

parametrized by ED-BP. The idea is that we want to re-
cover from N ′

m only those polytree edges in N ′. That is,
we parametrize deleted edges in N ′ using edges parameters
from the corresponding edges in N ′

m. Since N ′ is a poly-
tree, IBP is an exact inference algorithm on N ′. Therefore,
by Theorem 2, IBP messages propagated along the remain-
ing polytree edges in N ′ are exactly the edge parameters for
the corresponding edges in N ′

m.
Conversely, we can delete every edge in N ′ to recover the

minimal polytree network N ′
m. The idea now is that delet-

ing any individual edge in N ′ splits the network into two
disconnected subnetworks, and in particular, two polytrees.
Since Lemma 1 tells us that the marginal distributions are
unchanged in both subnetworks, the node marginals are un-
changed when we delete a single edge in N ′. Therefore,
we can delete edges one at a time from N ′ until we have
the minimal polytree N ′

m, without changing any of the node
marginals. Moreover, when we delete a single edge from
N ′, the ED-BP conditions for edges already deleted in N ′

remain satisfied. �

Running ED-BP in an arbitrary polytree N ′ can be more
concisely compared to running IBP in N by specifying a
message passing schedule. In particular, we first pass mes-
sages along the polytree edges of N ′ in sequence, and then
pass messages along deleted edges in parallel. When every
edge is deleted, ED-BP in N ′ corresponds to a fully parallel
message passing schedule (see also Wainwright, Jaakkola,
& Willsky 2003).

On the Correspondence Between ED-BP and GBP

ED-BP can be simulated in terms of a GBP algorithm
(Yedidia, Freeman, & Weiss 2005), and hence, an ED-BP



fixed point corresponds to a stationary point of a free en-
ergy approximation. In particular, we shall sketch how
an instance of ED-BP corresponds to an instance of itera-
tive joingraph propagation (IJGP) (Aji & McEliece 2001;
Dechter, Kask, & Mateescu 2002).

Let N be a Bayesian network and N ′ be the result of
deleting edges U → X from N . To parametrize N ′ using
ED-BP, say we use a jointree algorithm for exact inference
in N ′. We take a suitably constructed jointree for N ′ and
add an edge between clusters containing U ′ and S′, for each
edge U → X . This gives us a joingraph for IJGP.

We can then simulate ED-BP by IJGP in our specially con-
structed joingraph. Each IJGP iteration t consists of two
message-passing phases. First, we propagate message in
the jointree embedded in our joingraph; this corresponds to
propagating messages in a jointree for N ′

t−1
. Second, we

propagate messages across the remaining edges connecting
auxiliary variables U ′ and S′; this corresponds to comput-
ing parameters PM

t(u′) and SE
t(u) from N ′

t−1
(see Equa-

tions 5 and 6).

On Soft Evidence

There are two types of evidence that one may encounter:
hard evidence and soft evidence. Suppose the variable U
takes on two states, u and ū. Hard evidence on U fixes U to
one of its two states, say u. Soft evidence on a variable U is
not as conclusive: it may increase our belief in u, but not to
the point of certainty.

In a Bayesian network, we can model soft evidence on U
by adding an auxiliary child S and asserting s as hard evi-
dence. The strength of soft evidence on U , which we denote
by SE(U), is then specified by the CPT parameters θs|u for
each state u. For example, S could denote a noisy sensor,
evidence s could denote a sensor reading, and SE(U) could
denote the reliability of the reading.

For example, say SE(u) = 0.6 and SE(ū) = 0.2. Then
observing the auxiliary evidence s has the following effect
on the odds of u:

Pr(u|s)

Pr(ū|s)
=

Pr(s|u)

Pr(s|ū)

Pr(s)

Pr(s)

Pr(u)

Pr(ū)
=

SE(u)

SE(ū)

Pr(u)

Pr(ū)
.

In this example, the odds of u after observing soft evidence
is triple the odds of u before. Note that the change in the
odds of u depends only on the relative ratios of parameters
SE(U), not their absolute values. Moreover, the effect of
soft evidence on the global conditional distribution depends
only on the change in the odds of u (for details, see Pearl
1988, Chan & Darwiche 2005).
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