
Tractable Learning for Complex Probability Queries

Jessa Bekker, Jesse Davis
KU Leuven, Belgium

{jessa.bekker,jesse.davis}@cs.kuleuven.be

Arthur Choi, Adnan Darwiche, Guy Van den Broeck
University of California, Los Angeles

{aychoi,darwiche,guyvdb}@cs.ucla.edu

Abstract

Tractable learning aims to learn probabilistic models where inference is guaran-
teed to be efficient. However, the particular class of queries that is tractable de-
pends on the model and underlying representation. Usually this class is MPE
or conditional probabilities Pr(x|y) for joint assignments x,y. We propose a
tractable learner that guarantees efficient inference for a broader class of queries.
It simultaneously learns a Markov network and its tractable circuit representation,
in order to guarantee and measure tractability. Our approach differs from earlier
work by using Sentential Decision Diagrams (SDD) as the tractable language in-
stead of Arithmetic Circuits (AC). SDDs have desirable properties, which more
general representations such as ACs lack, that enable basic primitives for Boolean
circuit compilation. This allows us to support a broader class of complex proba-
bility queries, including counting, threshold, and parity, in polytime.

1 Introduction

Tractable learning [1] is a promising new machine learning paradigm that focuses on learning prob-
ability distributions that support efficient querying. It is motivated by the observation that while
classical algorithms for learning Bayesian and Markov networks excel at fitting data, they ignore the
cost of reasoning with the learned model. However, many applications, such as health-monitoring
systems, require efficient and (guaranteed) accurate reasoning capabilities. Hence, new learning
techniques are needed to support applications with these requirements.

Initially, tractable learning focused on the first model class recognized to be tractable: low-treewidth
graphical models [2–5]. Recent advances in probabilistic inference exploit other properties of a
model, including local structure [6] and exchangeability [7], which even scale to models that have
high treewidth. In particular, the discovery of local structure led to arithmetic circuits (ACs) [8],
which are a much more powerful representation of tractable probability distributions. In turn, this
led to new tractable learners that targeted ACs to guarantee efficient inference [9, 10]. In this con-
text, ACs with latent variables are sometimes called sum-product networks (SPNs) [11, 12]. Other
tractable learners target exchangeable models [13, 14] or determinantal point processes [15].

There is a trade-off in tractable learning that is poorly understood and often ignored: tractability
is not absolute, and always relative to a class of queries that the user is interested in. Existing ap-
proaches define tractability as the ability to efficiently compute most-probable explanations (MPE)
or conditional probabilities Pr(x|y) where x,y are joint assignments to subsets of random variables.
While these queries are indeed efficient on ACs, many other queries of interest are not. For example,
computing partial MAP remains NP-hard on low-treewidth and AC models [16]. Similarly, various

1

decision [17, 18], monotonicity [19], and utility [20] queries remain (co-)NP-hard.1 Perhaps the
simplest query beyond the reach of tractable AC learners is for probabilities Pr(φ|ψ), where φ, ψ
are complex properties, such as counts, thresholds, comparison, and parity of sets of random vari-
ables. These properties naturally appear throughout the machine learning literature, for example, in
neural nets [21], and in exchangeable [13] and statistical relational models [22]. We believe they
have not been used to their full potential in the graphical models world due to their intractability.
We call these types of queries complex probability queries.

This paper pushes the boundaries of tractable learning by supporting more queries efficiently. While
we currently lack any representation tractable for partial MAP, we do have all the machinery avail-
able to learn tractable models for complex probability queries. Their tractability is enabled by the
weighted model counting (WMC) [6] encoding of graphical models and recent advances in compi-
lation of Boolean functions into Sentential Decision Diagrams (SDDs) [23]. SDDs can be seen as
a syntactic subset of ACs with more desirable properties, including the ability to (1) incrementally
compile a Markov network, via a conjoin operator, (2) dynamically minimize the size and complex-
ity of the representation, and (3) efficiently perform complex probability queries.

Our first contribution is a tractable learning algorithm for Markov networks with compact SDDs,
following the outer loop of the successful ACMN learner [9] for ACs, that uses SDD primitives to
modify the circuit during the Markov network structure search. Support for the complex queries
listed above also means that these properties can be employed as features in the learned network.
Second, we prove that complex symmetric probability queries over n variables, as well as their
extensions, run in time polynomial in n and linear in the size of the learned SDD. Tighter complexity
bounds are obtained for specific classes of queries. Finally, we illustrate these tractability properties
in an empirical evaluation on four real-world data sets and four types of complex queries.

2 Background

2.1 Markov Networks

A Markov network or Markov random field compactly represents the joint distribution over a set of
variables X = (X1, X2, . . . , Xn) [24]. Markov networks are often represented as log-linear models,
that is, an exponentiated weighted sum of features of the state x of variables X: Pr(X = x) =
1
Z exp

∑
jwjfj(x). The fj(X) are real-valued functions of the state, wj is the weight associated

with fj , and Z is the partition function. For discrete models, features are often Boolean functions;
typically a conjunction of tests of the form (Xi = xi) ∧ · · · ∧ (Xj = xj). One is interested in
performing certain inference tasks, such as computing the posterior marginals or most-likely state
(MPE) given observations. In general, such tasks are intractable (#P- and NP-hard).

Learning Markov networks from data require estimating the weights of the features (parameter
learning), and the features themselves (structure learning). We can learn the parameters by opti-
mizing some convex objective function, which is typically the log-likelihood. Evaluation of this
function and its gradient is in general intractable (#P-complete). Therefore, it is common to opti-
mize an approximate objective, such as the pseudo-log-likelihood. The classical structure learning
approach [24] is a greedy, top-down search. It starts with features over individual variables, and
greedily searches for new features to add to the model from a set of candidate features, found by
conjoining pairs of existing features. Other approaches convert local models into a global one [25].
To prevent overfitting, one puts a penalty on the complexity of the model (e.g., number of features).

2.2 Tractable Circuit Representations and Tractable Learning

Tractable circuit representations overcome the intractability of inference in Markov networks. Al-
though we are not always guaranteed to find a compact tractable representation for every Markov
network, in this paper we will guarantee their existence for the learned models.

AC Arithmetic Circuits (ACs) [8] are directed acyclic graphs whose leafs are inputs representing ei-
ther indicator variables (to assign values to random variables), parameters (weights wj) or constants.
Figure 1c shows an example. ACs encode the partition function computation of a Markov network.

1The literature typically shows hardness for polytrees. Results carry over because these have compact ACs.

2

A B

parameter
weight feature variable

w1 A ∧B P1

w2 ¬A ∧ ¬B P2

(a) Markov Network (b) Sentential Decision Diagram

+

IA I¬A

+

IB I¬B

+

I¬BIB

+

ew1 1 1 0

+

1 1 ew1 0

+

1 ew2 ew1 0

∗ ∗

∗

∗ ∗ ∗ ∗

∗∗∗

∗ ∗

(c) Arithmetic Circuit
Figure 1: A Markov network over variables A,B, and its tractable SDD and AC representations.

By setting indicators to 1 and evaluating the AC bottom-up, the value of the partition function, Z, is
obtained at the root. Other settings of the indicators encode arbitrary evidence. Moreover, a second,
top-down pass yields all single-variable marginal probabilities; similar procedures exist for MPE.
All these algorithms run in time linear in the size of the AC (number of edges). The tractable learn-
ing paradigm for Markov networks is best exemplified by ACMN [9], which concurrently learns a
Markov network and its AC. It employs a complexity penalty based on the inference cost. Moreover,
ACMN efficiently computes the exact log-likelihood (as opposed to pseudo-log-likelihood) and its
gradient on the AC. ACMN uses the standard greedy top-down feature search outlined above.

SDD Sentential Decision Diagrams (SDDs) are a tractable representation of sentences in propo-
sitional logic [23]. The supplement2 reviews SDDs in detail; a brief summary is next. SDDs are
directed acyclic graphs, as depicted in Figure 1b. A circle node represents the disjunction of its
children. A pair of boxes denotes the conjunction of the two boxes, and each box can be a (negated)
Boolean variable or a reference to another SDD node. The detailed properties of SDDs yield two
benefits. First, SDDs support an efficient conjoin operator that can incrementally construct new
SDDs from smaller SDDs in linear time. Second, SDDs support dynamic minimization, which
allows us to control the growth of an SDD during incremental construction.

There is a close connection between SDDs for logic and ACs for graphical models, through an
intermediate weighted model counting formulation [6], which is reviewed in the supplement. Given
a graphical model M , one can construct a logical sentence ∆ whose satisfying assignments are in
one-to-one correspondence with the possible worlds of M . Moreover, each satisfying assignment of
∆ encodes the weights wj that apply to its possible world in M . For each feature fj of M , this ∆
includes a constraint fj ⇔ Pj , meaning that weightwj applies when “parameter” variable Pj is true;
see Figure 1a. A consequence of this correspondence is that, given an SDD for ∆, we can efficiently
construct an AC for the original Markov network M ; see Figure 1. Hence, an SDD corresponding
to M is a tractable representation of M . Different from ACs, SDDs have the following properties:
support for efficient (linear) conjunction allows us to add new features fj and incrementally learn a
Markov network. Moreover, dynamic minimization lets us systematically search for more compact
circuits for the same Markov network, mitigating the increasing complexity of inference as we learn
more features. Such operations are not available for ACs in general.

3 Learning Algorithm

We propose LearnSDD, which employs a greedy, general-to-specific search that simultaneously
learns a Markov network and its underlying SDD which is used for inference. The cost of inference
in the learned model is dictated by the size of its SDD. Conceptually, our approach is similar to
ACMN [9] with the key differences being our use of SDDs instead of ACs, which gives us more
tractability and freedom in the types of features that are considered.

2https://dtai.cs.kuleuven.be/software/learnsdd

3

https://dtai.cs.kuleuven.be/software/learnsdd

Algorithm 1 LearnSDD(T, e, α)
initialize model M with variables as features
Mbest ←M
while number of edges |SDDM | < e and not timeout

best score = −∞
F ← generateFeatures(M,T)
for each feature f in F do
M ′ ←M .add(f)
if score(M ′, T, α) > best score

best score = score(M ′, T, α)
Mbest ←M ′

M ←Mbest

LearnSDD, outlined in Algorithm 1, receives as input a training set T , a maximum number of edges
e, and a parameter α to control the relative importance of fitting the data vs. the cost of inference. As
is typical with top-down approaches to structure learning [24], the initial model has one featureXi=
true for each variable, which corresponds to a fully-factorized Markov network. Next, LearnSDD
iteratively constructs a set of candidate features, where each feature is a logical formula. It scores
each feature by compiling it into an SDD, conjoining the feature to the current model temporarily,
and then evaluating the score of the model that includes the feature. The supplement shows how
a features is added to an SDD. In each iteration, the highest scoring feature is selected and added
to the model permanently. The process terminates when the maximum number of edges is reached
or when it runs out of time. Inference time is dictated by the size of the learned SDD. To control
this cost, we invoke dynamic SDD minimization each time a feature is evaluated, and when we
permanently add a feature to the model.

Performing structure learning with SDDs offers advantages over ACs. First, SDDs support a practi-
cal conjoin operation, which greatly simplifies the design of a top-down structure learning algorithm
(ACMN instead relies on a complex special-purpose AC modification algorithm). Second, SDDs
support dynamic minimization, allowing us to search for smaller SDDs, as needed. The following
two sections discuss the score function and feature generation in greater detail.

3.1 Score Function and Weight Learning

Score functions capture a trade-off between fitting the training data and the preference for simpler
models, captured by a regularization term. In tractable learning, the regularization term reflects the
cost of inference in the model. Therefore, we use the following score function:

score(M ′, T) = [log Pr(T |M ′)− log Pr(T |M)]− α [|SDDM ′ | − |SDDM |] /|SDDM | (1)

where T is the training data, M ′ is the model extended with feature f , M is the old model, |SDD .|
returns the number of edges in the SDD representation, and α is a user-defined parameter. The first
term is the improvement in the model’s log-likelihood due to incorporating f . The second term
measures the relative growth of the SDD representation after incorporating f . We use the relative
growth because adding a feature to a larger model adds many more edges than adding a feature to
a smaller model. Section 4 shows that any query’s inference complexity depends on the SDD size.
Finally, α lets us control the trade-off between fitting the data and the cost of inference.

Scoring a model requires learning the weights associated with each feature. Because we use SDDs,
we can efficiently compute the exact log-likelihood and its gradient using only two passes over the
SDD. Therefore, we learn maximum-likelihood estimates of the weights.

3.2 Generating Features

In each iteration, LearnSDD constructs a set of candidate features using two different feature gener-
ators: conjunctive and mutex. The conjunctive generator considers each pair of features f1, f2 in
the model and proposes four new candidates per pair: f1 ∧ f2, ¬f1 ∧ f2,f1 ∧ ¬f2 and ¬f1 ∧ ¬f2.

The mutex generator automatically identifies mutually exclusive sets of variables in the data and
proposes a feature to capture this relationship. Mutual exclusivity arises naturally in data. It oc-
curs in tractable learning because existing approaches typically assume Boolean data. Hence,

4

any multi-valued attribute is converted into multiple binary variables. For all variable sets X =
{X1, X2, · · · , Xn} that have exactly one “true” value in each training example, the exactly one fea-
ture

∨n
i=1(Xi ∧

∧
j 6=i ¬Xj) is added to the candidate set. When at most one variable is “true”, the

mutual exclusivity feature
∨n
i=1(Xi ∧

∧
j 6=i ¬Xj) ∨

∧n
j=1 ¬Xj is added to the candidate set.

4 Complex Queries

Tractable learning focuses on learning models that can efficiently compute the probability of a query
given some evidence, where both the query and evidence are conjunctions of literals. However, many
other important and interesting queries do not conform to this structure, including the following:

• Consider the task of predicting the probability that a legislative bill will pass given that
some lawmakers have already announced how they will vote. Answering this query re-
quires estimating the probability that a count exceeds a given threshold.

• Imagine only observing the first couple of sentences of a long review, and wanting to assess
the probability that the entire document has more positive words than negative words in
it, which could serve as proxy for how positive (negative) the review is. Answering this
requires comparing two groups, in this case positive words and negative words.

Table 1 lists these and other examples of what we call complex queries, which are logical functions
that cannot be written as a conjunction of literals. Unfortunately, tractable models based on ACs
are, in general, unable to answer these types of queries efficiently. We show that using a model
with an SDD as the target tractable representation can permit efficient exact inference for certain
classes of complex queries: symmetric queries and their generalizations. No known algorithm exists
for efficiently answering these types of queries in ACs. For other classes of complex queries, the
complexity is never worse than for ACs, and in many cases SDDs will be more efficient. Note that
SPNs have the same complexity for answering queries as ACs since they are interchangeable [12].

We first discuss how to answer complex queries using ACs and SDDs. We then discuss some classes
of complex queries and when we can guarantee tractable inference in SDDs.

4.1 Answering Complex Queries

Currently, it is only known how to solve conjunctive queries in ACs. Therefore, we will answer
complex queries by asking multiple conjunctive queries. We convert the query into DNF format∨
C consisting of n mutually exclusive clauses C = {C1, . . . , Cn}. Now, the probability of the

query is the sum of the probabilities of the clauses: Pr (
∨

C) =
∑n
i=1 Pr(Ci). In the worst case,

this construction requires 2m clauses for queries over m variables. The inference complexity for
each clause on the AC is O(|AC |). Hence, the total inference complexity is O(2m · |AC |).

SDDs can answer complex queries without transforming them into mutually exclusive clauses. In-
stead, the query Q can directly be conjoined with the weighted model counting formulation ∆ of
the Markov network M . Given an SDD Sm for the Markov network and an SDD Sq for Q, we
can efficiently compile an SDD Sa for Q ∧ ∆. From Sa, we can compute the partition function
of the Markov network after asserting Q, which gives us the probability of Q. This computation is
performed efficiently on the AC that corresponds to Sa (cf. Section 2.2). The supplement explains
the protocol for answering a query. The size of the SDD Sa is at most |Sq| · |Sm| [23], and inference
is linear in the circuit size, therefore it is O(|Sq| · |Sm|). When converting an arbitrary query into
SDD, the size may grow as large as 2m, with m the number of variables in the query. But often
it will be much smaller (see Section 4.2). Thus, the overall complexity is O(2m · |Sm|), but often
much better, depending on the query class.

4.2 Classes of Complex Queries

A first class of tractable queries are symmetric Boolean functions. These queries do not depend on
the exact input values, but only on how many of them are true.

Definition 1. A Boolean function f(X1, . . . , Xn) : {0, 1}n → {0, 1} is a symmetric query precisely
when f(X1, . . . , Xn) = f(Xπ(1), . . . , Xπ(n)) for every permutation π of the n indexes.

5

Table 1: Examples of complex queries, with m the SDD size and n the number of query variables.

Query class Query Type Inference Complexity Example
Symmetric Parity O(mn) #(A,B,C)%2 = 0
Query k-Threshold O(mnk2) #(A,B,C) > 1

Exactly-k O(mnk2) #(A,B,C) = 2
Modulo-k O(mnk) #(A,B,C)%3 = 0

Asymmetric Exactly-k O(mnk2) #(A,B,¬C) = 2
Tractable Hamming distance k O(mnk2) #(A,B,¬C) ≤ 2
Query Group comparison O(mn3) #(A,B,¬C) > #(D,¬E)

Table 1 lists examples of functions that can always be answered in polytime because they have
a compact SDD. Note that the features generated by the mutex generator are types of exactly-k
queries where k = 1, and therefore have a compact SDD. We have the following result.

Theorem 1. Markov networks with compact SDDs support tractable querying of symmetric func-
tions. More specifically, let M be a Markov network with an SDD of size m, and let Q be any
symmetric function of n variables. Then, PrM (Q) can be computed in O(mn3) time. Moreover,
when Q is a parity function, querying takes O(mn) time, and when Q is a k-threshold or exactly-k
function, querying takes O(mnk2) time.

The proof shows that any SDD can be conjoined with these queries without increasing the SDD
size by more than a factor polynomial in n. The proof of Theorem 1 is given in the supplement.
This tractability result can be extended to certain non-symmetric functions. For example, negating
the inputs to a symmetric functions still yields a tractable complex query. This allows queries for
the probability that the state is within a given Hamming distance from a desired state. Moreover,
Boolean combinations of a bounded number of tractable function also admit efficient querying. This
allows queries that compare symmetric properties of different groups of variables.

We cannot guarantee tractability for other classes of complex queries, because some queries do not
have a compact SDD representation. An example of such a query is the weighed k−threshold where
each literal has a corresponding weight and the total weight of true literals must be bigger than some
threshold. While the worst-case complexity of using SDDs and ACs to answer such queries is the
same, we show in the supplement that SDDs can still be more efficient in practice.

5 Empirical Evaluation

The goal of this section is to evaluate the merits of using SDDs as a target representation in tractable
learning for complex queries. Specifically, we want to address the following questions:

Q1 Does capturing mutual exclusivity allow LearnSDD to learn more accurate models than ACMN?

Q2 Do SDDs produced by LearnSDD answer complex queries faster than ACs learned by ACMN?

To resolve these questions, we run LearnSDD and ACMN on real-world data and compare their
performance. Our LearnSDD implementation builds on the publicly available SDD package.3

5.1 Data

Table 2 describes the characteristics of each data set.

Table 2: Data Set Characteristics
Data Set Train Set Size Tune Set Size Test Set Size Num. Vars.
Traffic 3,311 441 662 128
Temperature 13,541 1,805 2,708 216
Voting 1,214 200 350 1,359
Movies 1,600 150 250 1000

3http://reasoning.cs.ucla.edu/sdd/

6

http://reasoning.cs.ucla.edu/sdd/

Mutex features We used the Traffic and Temperature data sets [5] to evaluate the benefit of detect-
ing mutual exclusivity. In the initial version of these data sets, each variable had four values, which
were binarized using a 1-of-n encoding.

Complex queries To evaluate complex queries, we used voting data from GovTrac.us and Pang
and Lee’s Movie Review data set.4 The voting data contains all 1764 votes in the House of Repre-
sentatives from the 110th Congress. Each bill is an example and the variables are the votes of the
453 congressmen, which can be yes, no, or present. The movie review data contains 1000 positive
and 1000 negative movie reviews. We first applied the Porter stemmer and then used the Scikit
Learn CountVectorizer,5 which counts all 1- and 2-grams, while omitting the standard Scikit Learn
stop words. We selected the 1000 most frequent n-grams in the training data to serve as the features.

5.2 Methodology

For all data sets, we divided the data into a single train, tune, and test partition. All experiments
were run on identically configured machines with 128GB RAM and twelve 2.4GHz cores.

Mutex features Using the training set, we learned models with both LearnSDD and ACMN. For
LearnSDD, we tried setting α to 1.0, 0.1, 0.01 and 0.001. For ACMN, we did a grid search for
the hyper-parameters (per-split penalty ps and the L1 and L2-norm weights l1 and l2) with ps ∈
{2, 5, 10}, l1 ∈ {0.1, 1, 5} and l2 ∈ {0.1, 0.5, 1}. For both methods, we stopped learning if the
circuit exceeded two million edges or the algorithm ran for 72 hours. For each approach, we picked
the best learned model according to the tuning set log-likelihood. We evaluated the quality of the
selected model using the log-likelihood on the test set.

Complex queries In this experiment, the goal is to compare the time needed to answer a query in
models learned by LearnSDD and ACMN. In both SDDs and ACs, inference time depends linearly
on the number of edges in the circuit. Therefore, to ensure a fair comparison, the learned models
should have approximately the same number of edges. Hence, we first learned an SDD and then
used the number of edges in the learned SDD to limit the size of the model learned by ACMN.

In the voting data set, we evaluated the threshold query: what is the probability that at least 50%
of the congressmen vote “yes” on a bill, given as evidence that some lawmakers have already
announced their vote? We vary the percentage of unknown votes from 1 to 100% in intervals
of 1% point. We evaluated several queries on the movie data set. The first two queries mimic
an active sensing setting to predict features of the review without reading it entirely. The evi-
dence for each query are the features that appear in the first 750 characters of the stemmed re-
view. On average, the stemmed reviews have approximately 3,600 characters. The first query is
Pr(#(positive ngrams) > 5) and second is Pr(#(positive ngrams) > #(negative ngrams)),
which correspond to a threshold query and a group comparison query, respectively. For both queries,
we varied the size of the positive and negative ngram sets from 5 to 100 ngrams with an increment
size of 1. We randomly selected which ngrams are positive and negative as we are only interested
in a query’s evaluation time. The third query is the probability that a parity function over a set of
features is even. We vary the number of variables considered by the parity function from 5 to 100.
For each query, we report the average per example inference time for each learned model on the
test set. We impose a 10 minute average time limit and 100 minutes individual time limit for each
query. For completeness, the supplement reports run times for queries that are guaranteed to (not)
be tractable for both ACs and SDDs as well as the conditional log-likelihoods of all queries.

5.3 Results and Discussion

Mutex features Figure 2 shows the test set log-likelihoods as a function of the size of the learned
model. In both data sets, LearnSDD produces smaller models that have the same accuracy as AC.
This is because it can add mutex features without the need to add other features that are needed as
building blocks but are redundant afterwards. These results allow us to affirmatively answer (Q1).
Complex queries Figure 3 shows the inference times for complex queries that are extensions of
symmetric queries. For all queries, we see that LearnSDD’s model results in significantly faster
inference times than ACMN’s model. In fact, ACMN’s model exceeds the ten minute time limit on

4http://www.cs.cornell.edu/people/pabo/movie-review-data/
5http://tartarus.org/martin/PorterStemmer/ and http://scikit-learn.org/

7

GovTrac.us
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://tartarus.org/martin/PorterStemmer/
http://scikit-learn.org/

-80

-70

-60

-50

-40

0 500000

L
og

-l
ik

el
ih

oo
d

Size

LearnSDD
ACMN

(a) Temperature

-40

-35

-30

-25

-20

0 500000 1e+06

L
og

-l
ik

el
ih

oo
d

Size

LearnSDD
ACMN

(b) Traffic
Figure 2: The size and log-likelihood of the models learned by LearnSDD and ACMN. Ideally, the model is

small with high accuracy (upper left corner), which is best approached by the LearnSDD models.

334 out of 388 of the query settings whereas this only happens in 25 settings for LearnSDD. The
SDD can answer all parity questions and positive word queries in less than three hundred millisec-
onds and the group comparison in less than three seconds. It can answer the voting query with up to
75% of the votes unknown in less than ten minutes. These results demonstrate LearnSDD’s superior
ability to answer complex queries compared to ACMN and allow us to positively answer (Q2).

0
100
200
300
400
500
600

0 20 40 60 80 100

Ti
m

e
(s

)

% Unknown votes

Timeout

SDD
AC

(a) Threshold query (Voting)

0
100
200
300
400
500
600

0 20 40 60 80 100

Ti
m

e
(s

)

#positive words ≥ 5

Timeout

SDD
AC

(b) Threshold query (Movie)

0
100
200
300
400
500
600

0 20 40 60 80 100

Ti
m

e
(s

)

#positive words ≥ #negative words

Timeout

SDD
AC

(c) Group comparison (Movie)

0
100
200
300
400
500
600

0 20 40 60 80 100

Ti
m

e
(s

)

variables

Timeout

SDD
AC

(d) Parity (Movie)
Figure 3: The time for SDDs vs. ACs to answer complex queries, varying the number of query variables.

SDDs need less time in all settings, answering nearly all queries. ACs timeout in more than 85% of the cases.

6 Conclusions

This paper highlighted the fact that tractable learning approaches learn models for only a restricted
classes of queries, primarily focusing on the efficient computation of conditional probabilities. We
focused on enabling efficient inference for complex queries. To achieve this, we proposed using
SDDs as the target representation for tractable learning. We provided an algorithm for simultane-
ously learning a Markov network and its SDD representation. We proved that SDDs support poly-
time inference for complex symmetric probability queries. Empirically, SDDs enable significantly
faster inference times than ACs for multiple complex queries. Probabilistic SDDs are a closely re-
lated representation: they also support complex queries (in structured probability spaces) [26, 27],
but they lack general-purpose structure learning algorithms (a subject of future work).

Acknowledgments

We thank Songbai Yan for prior collaborations on related projects. JB is supported by IWT
(SB/141744). JD is partially supported by the Research Fund KU Leuven (OT/11/051, C22/15/015),
EU FP7 Marie Curie CIG (#294068), IWT (SBO-HYMOP) and FWO-Vlaanderen (G.0356.12). AC
and AD are partially supported by NSF (#IIS-1514253) and ONR (#N00014-12-1-0423).

8

References
[1] P. Domingos, M. Niepert, and D. Lowd (Eds.). In ICML Workshop on Learning Tractable Probabilistic

Models, 2014.

[2] F. R.. Bach and M. I. Jordan. Thin junction trees. In Proceedings of NIPS, pages 569–576, 2001.

[3] N. L. Zhang. Hierarchical latent class models for cluster analysis. JMLR, 5:697–723, 2004.

[4] M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical models. In Proc. UAI, 2004.

[5] A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In Proceedings of
NIPS, pages 273–280, 2007.

[6] M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. AIJ, 172(6–7):
772–799, 2008.

[7] M. Niepert and G. Van den Broeck. Tractability through exchangeability: A new perspective on efficient
probabilistic inference. In Proceedings of AAAI, 2014.

[8] A. Darwiche. A differential approach to inference in Bayesian networks. JACM, 50(3):280–305, 2003.

[9] D. Lowd and A. Rooshenas. Learning Markov networks with arithmetic circuits. In Proc. AISTATS, pages
406–414, 2013.

[10] T. Rahman, P. Kothalkar, and V. Gogate. Cutset networks: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In Proceedings of ECML PKDD, pages 630–645, 2014.

[11] R. Gens and P. Domingos. Learning the structure of sum-product networks. In Proceedings of ICLM,
pages 873–880, 2013.

[12] A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable interactions.
In Proceedings ICML, pages 710–718, 2014.

[13] M. Niepert and P. Domingos. Exchangeable variable models. In Proceedings of ICML, 2014.

[14] J. Van Haaren, G. Van den Broeck, W. Meert, and J. Davis. Lifted generative learning of markov logic
networks. Machine Learning, 2015. (to appear).

[15] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Foundations and Trends
in Machine Learning, 2012.

[16] J. D. Park. Map complexity results and approximation methods. In Proceedings of UAI, 2002.

[17] S. J. Chen, A. Choi, and A. Darwiche. Algorithms and applications for the same-decision probability.
JAIR, pages 601–633, 2014.

[18] C. Krause, A.and Guestrin. Optimal nonmyopic value of information in graphical models - efficient
algorithms and theoretical limits. In Proceedings of IJCAI, 2005.

[19] L. C. van der Gaag, H. L. Bodlaender, and A. Feelders. Monotonicity in bayesian networks. In Proceed-
ings of UAI, pages 569–576, 2004.

[20] D. D. Mauá, C. P. De Campos, and M. Zaffalon. On the complexity of solving polytree-shaped limited
memory influence diagrams with binary variables. AIJ, 205:30–38, 2013.

[21] I. Parberry and G. Schnitger. Relating Boltzmann machines to conventional models of computation.
Neural Networks, 2(1):59–67, 1989.

[22] D. Buchman and D. Poole. Representing aggregators in relational probabilistic models. In Proceedings
of AAAI, 2015.

[23] A. Darwiche. SDD: A new canonical representation of propositional knowledge bases. In Proceedings of
IJCAI, pages 819–826, 2011.

[24] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing Features of Random Fields. IEEE TPAMI, 19:
380–392, 1997.

[25] Daniel Lowd and Jesse Davis. Improving Markov network structure learning using decision trees. The
Journal of Machine Learning Research, 15(1):501532, 2014.

[26] D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams. In
KR, 2014.

[27] A. Choi, G. Van den Broeck, and A. Darwiche. Tractable learning for structured probability spaces: A
case study in learning preference distributions. In Proceedings of IJCAI, 2015.

[28] Y. Xue, A. Choi, and A. Darwiche. Basing decisions on sentences in decision diagrams. In AAAI, pages
842–849, 2012.

[29] A. Choi and A. Darwiche. Dynamic minimization of sentential decision diagrams. In Proceedings AAAI,
2013.

9

6

 ⊤ C ¬B

2

B A ¬B !

2

B ¬A

5

D C ¬D!

(a) An SDD

6

2 5

B
0

A
1

D
3

C
4

(b) A Vtree
Figure 4: An SDD and vtree for (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

[30] U. Oztok and A. Darwiche. A top-down compiler for sentential decision diagrams. In Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[31] G. Van den Broeck and A. Darwiche. On the role of canonicity in knowledge compilation. In Proceedings
of the 29th Conference on Artificial Intelligence (AAAI), 2015.

[32] A. Darwiche and P. Marquis. A knowledge compilation map. JAIR, 17:229–264, 2002.

[33] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE TC, C-35:677–691, 1986.

[34] M. R. Prasad, P. Chong, and K. Keutzer. Why is ATPG easy? In DAC, pages 22–28, 1999.

[35] J. Huang and A. Darwiche. Using DPLL for efficient OBDD construction. In SAT, pages 157–172, 2004.

[36] A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in verification: Local vs. global. In LPAR, 2005.

[37] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

[38] K. Pipatsrisawat and A. Darwiche. Top-down algorithms for constructing structured DNNF: Theoretical
and practical implications. In Proceedings of ECAI, pages 3–8, 2010.

A Sentential Decision Diagrams

The Sentential Decision Diagram (SDD) is a newly introduced target representation for propositional
knowledge bases [23, 28–31]. It is a strict subset of deterministic, decomposable negation normal
form (d-DNNF), which has been used as a target representation for probabilistic graphical models,
such as Markov networks and Bayesian networks [8, 6]. The ACE system is a state-of-the-art system
for probabilistic inference, which is based on encoding a network as a propositional knowledge base
(in CNF), which in turn is compiled into d-DNNF.6 SDDs and d-DNNFs impose two properties
on propositional knowledge bases, decomposability and determinism, that enable the tractability
of probabilistic (and logical) inference queries [32]. For example, decomposability asserts that the
branches of a conjunction have sets of variables that are pairwise disjoint; this enables (pure) MAP
queries in Markov networks (and satisfiability queries in propositional knowledge bases).

Figure 4a depicts an SDD: paired-boxes p s are called elements and represent conjunctions (p∧s),
where p is called a prime and s is called a sub. Circles are called decision nodes and represent dis-
junctions of the corresponding elements. SDDs satisfy stronger properties than d-DNNFs, allowing
one, for example, to conjoin or disjoin two SDDs in polytime. In contrast, this is not possible in
general with d-DNNFs (corresponding to ACs) [32], and other tractable representations for proba-
bilistic graphical models. As we describe later, the ability to conjoin and disjoin SDDs efficiently is
critical for the incremental learning of Markov networks.

An SDD is constructed for a given vtree, which is a full binary tree whose leaves are in one-to-one
correspondence with the given variables; see Figure 4b. The SDD is canonical for a given vtree
(under some conditions) and its size depends critically on the vtree used. Ordered Binary Decision
Diagrams (OBDDs) [33] are a strict subset of SDDs: OBDDs correspond precisely to SDDs that
are constructed using a special type of vtree, called a right-linear vtree [23]. Theoretically, SDDs
come with size upper bounds (based on treewidth) [23] that are tighter than the size upper bounds
that OBDDs come with (based on pathwidth) [34–36]. In practice, dynamic compilation algorithms
can find SDDs that are orders-of-magnitude more succinct than those found using OBDDs. Such
algorithms are enabled by the canonicity of SDDs, which allows one to search the space of vtrees

6ACE is available at http://reasoning.cs.ucla.edu/ace/, which uses C2D to compile CNFs
to d-DNNFs, which is also available at http://reasoning.cs.ucla.edu/c2d/.

10

http://reasoning.cs.ucla.edu/ace/
http://reasoning.cs.ucla.edu/c2d/

1

IA 3

IB 5

P1 P2

Figure 5: Vtree for Figure 1

to find succinct SDDs. As we shall describe later, the ability to dynamically minimize an SDD is
critical for learning tractable representations of Markov networks.

Every decision node in an SDD is normalized for some vtree node. In Figure 4a, each decision
node is labeled with the vtree node it is normalized for. Consider a decision node with elements
p1 s1 , . . . , pn sn , and suppose that it is normalized for a vtree node v which has variables X in

its left subtree and variables Y in its right subtree. We are then guaranteed that each prime pi will
only mention variables in X and that each sub si will only mention variables in Y (this ensures
decomposability). Moreover, the primes are guaranteed to represent propositional sentences that
are consistent, mutually exclusive, and exhaustive (this ensures determinism). For example, the top
decision node in Figure 4a has elements that represent the following sentences:

{(A ∧B︸ ︷︷ ︸
prime

, true︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}

One can verify that these primes and subs satisfy the properties above.

In our experiments, we use the SDD package provided by the Automated Reasoning Group at
UCLA.7 This package allows one to efficiently conjoin, disjoin and negate SDDs, in addition to
computing weighted model counts (i.e., the partition function of a Markov network and its deriva-
tives) in linear time [8, 37]. Moreover, this package supports the dynamic minimization of SDDs,
by searching the space of vtrees [29], which is critical for controlling the complexity of inference in
an SDD representation of a Markov network.

B Weighted Model Counting

We review here how to reduce inference in Markov networks to weighted model counting [6]. Fig-
ure 1a in the main text highlights a simple Markov network over two binary variables A and B; we
note that the reduction to weighted model counting also generalizes to multi-valued variables in a
straightforward way.

We can encode a Markov network as a propositional knowledge base ∆ whose weighted model count
will correspond to the partition function of the Markov network: Z =

∑
x exp

(∑
j wjfj(x)

)
. We

first define the propositional variables of the knowledge base ∆. First, for each Markov network
variable Xi we define indicator variables IXi of ∆. Second, for each feature fj with weight wj , we
define a parameter variables Pj . In Figure 1a, we have two binary features, with their corresponding
parameter variables in the knowledge base ∆.

Our knowledge base ∆ is composed of certain constraints, one for each feature fj in the Markov
network. Assuming each feature is a term (a conjunction of literals), then we denote αj as the cor-
responding term over indicator variables IXi . Our knowledge base ∆ is then composed of the con-
straints αj ⇔ Pj for each feature fj . In our example, we include four constraints in the knowledge
base ∆, one for each feature. For the two binary features of Figure 1a, we introduce two constraints:
for the term A ∧ B we introduce the constraint P1 ⇔ (IA ∧ IB) and for the term ¬A ∧ ¬B we
introduce the constraint P2 ⇔ (¬IA ∧ ¬IB). Figure 1b highlights an SDD representation of this
example, and the corresponding vtree in Figure 5.

7The SDD package is available at http://reasoning.cs.ucla.edu/sdd/.

11

http://reasoning.cs.ucla.edu/sdd/

To perform weighted model counting, we need to specify weights on each literal of the knowl-
edge base ∆. For each indicator variable Xi, we set both literal weights W (IXi

) and W (¬IXi
)

to one. For each parameter variable, we set the positive literal weight W (Pj) to the weight of the
corresponding feature, i.e., W (Pj) = exp(wj). We further set the negative literal weight W (¬Pj)
to one. The models w of the resulting knowledge base ∆ are now in one-to-one correspondence
with rows of the joint distribution table induced by our Markov network. In particular, consider the
weight W (w) of a model w, and the weighted model count W (∆) of our knowledge base ∆:

W (w) =
∏
w|=`

W (`) W (∆) =
∑
w|=∆

W (w)

Note that if model w is consistent with term αj of feature fj , then the corresponding parameter
variable Pj is set to true in model w, and the model weight W (w) includes the feature weight wj .
For example, we have the following model w and model weight W (w):

w = (IA, IB , P1,¬P2)

W (w) = W (P1)

= exp(w1) = Pr(A,B) · Z.

Further, the weighted model count yields the partition function Z. We incorporate evidence by
setting to zero the weights of any indicator variable IXi

that is not compatible with the evidence.
The weighted model count then corresponds to the probability of evidence (after normalization by
the partition function).

C Protocols for SDD Manipulation

This section provides insight in how to manipulate SDDs for learning and answering queries. First
we show how to add a feature to an existing model and then we show how to use an SDD to answer
complex probability queries with evidence.

C.1 Adding Features

Given: Markov network M with a corresponding SDD SM and a feature fi with corresponding
weight wi. Feature fi is a logical formula over variables or previously added features, e.g. a ∧ fj ,
where a is a variable and fi a previously added feature.

Construct: A new SDD SM ′ that corresponds to the model M ′ which is the combination of the
original model M and the new feature fi

Protocol:

1. Introduce a new parameter variable Pfi .

2. Compile the formula Pfi ⇔ fi (e.g. Pfi ⇔ a ∧ fj) to SDD Sfi .

3. Add the feature to the model by conjoining the two SDDs: SM ′ = conjoin(SM , Sfi)

4. During weighted model counting, the new variable Pfi will have wi as a positive weight
and 1 as a negative weight.

C.2 Answering Queries

Given: Markov network M with a corresponding SDD SM and evidence e where e is a subset of
the variables with their given values, e.g. e = {E = 1, F = 0}.

Answer: A query Pr(q|e,M), e.g. threshold query Pr(#(A,B,C,D) > 1|e,M).

12

Protocol:

1. Compile q to SDD Sq .
As an example, consider the following formula for the query #(A,B,C,D) > 1:

α#(A,B,C,D)>1 = (A ∧ α#(B,C,D)>0) ∨ (¬A ∧ α#(B,C,D)>1)

which has the following sub-formula

α#(B,C,D)>1 = (B ∧ α#(C,D)>0) ∨ (¬B ∧ α#(C,D)>1)

α#(C,D)>1 = (C ∧ α#(D)>0) ∨ (¬C ∧ α#(D)>1)

α#(D)>1 = ⊥

α#(B,C,D)>0 = (B ∧ >) ∨ (¬B ∧ α#(C,D)>0)

α#(C,D)>0 = (C ∧ >) ∨ (¬C ∧ α#(D)>0)

α#(D)>0 = D

The above formulas correspond to sub-SDDs (each corresponds to a decision node, except
for α#(D)>1 and α#(D)>0 which correspond to terminal nodes). These formulas can be
constructed recursively using the apply operation for SDDs, to conjoin SDD literals and
SDD sub-formula. We also observe that the sub-formulas α#(C,D)>0 and α#(D)>0 appear
multiple times, and can be re-used via caching.

2. Set the evidence e in SDD SM by conditioning on the values, this results in a new SDD
SM,e. As a bonus, this step will reduce the size of the SDD and therefore speed up the next
steps.

3. If the query also contains evidence variables, condition the Sq on the evidence values as
well. This results in a new SDD Sq,e

4. Use SDD SM,e to calculate WMCM,e

5. Conjoin the model and the query SM∧q,e = conjoin(SM,e, Sq,e)

6. Use SDD SM∧q,e to calculate WMCM∧q,e

7. The answer to the query is

Pr(q|e,M) =
WMCM∧q,e

WMCM,e

D Proof of Theorem 1

Proof. First, we have PrM (q) = WMC (q∧M)
WMC (M) . We can compute the weighted model count of net-

work M , WMC (M), in time O(m) given an SDD for network M of size m. Thus, it suffices to
show that we can compute WMC (q ∧M) in time O(mn3). First, any symmetric function q has a
structured d-DNNF of size O(n3), for any vtree [38]. Second, conjoining two structured d-DNNFs,
with sizes m1 and m2, takes time O(m1m2), when they share the same vtree [38]. Since any
SDD is a structured d-DNNF, conjoining an SDD of size m with any symmetric function takes time
O(mn3), and results in a structured d-DNNF of size O(mn3). Since we can also perform weighted
model-counting on a structured d-DNNF in time linear in its size, we can compute WMC (q∧M) in
time O(mn3). Similarly, for the special cases of parity, k-threshold, and exactly-k functions, where
the number of structured d-DNNF nodes respecting each vtree node can be bounded by a function
of k [38].

E Complex Query Experiments

E.1 Time Needed by Simpler and Harder Queries

To contrast the symmetric queries with simpler and harder cases, we also evaluated simple con-
junctive queries and weighted k-threshold queries using the movie data set. We vary the number

13

of variables involved in the query from 5 to 100 variables. Each literal in the weighted k-threshold
query has a corresponding weight an the total weight of true literals must be bigger than some thresh-
old. For the experiment, all the variables were assigned random weights and the threshold was set
to half of the maximum total weight.

Figure 6 shows the time needed to answer the conjunctive and weighted k-threshold query. As ex-
pected, both the AC and SDD can answer the conjunctive queries efficiently: they always need under
0.1 seconds. They both have difficulties with the weighted k-threshold query, but the SDD does out-
perform the AC. SDDs are not guaranteed to efficiently answer weighted k-threshold queries, but
in practice they often do. Even when Figure 6b shows a timeout, the SDD was able to answer the
query efficiently for most test examples, but at least one example exceeded the time limit. Thus
even though we cannot guarantee efficient inference in all cases, it will still often be beneficial to
use SDDs as the underlying tractable representation.

0
100
200
300
400
500
600

0 20 40 60 80 100

Ti
m

e
(s

)

variables

Timeout

SDD
AC

(a) Conjunctive queries (Movie)

0
100
200
300
400
500
600

0 20 40 60 80 100
Ti

m
e

(s
)

variables

Timeout

SDD
AC

(b) Weighted threshold (Movie)
Figure 6: The time needed by an SDD vs. an AC to answer a conjunctive and a weighted k-threshold query,
for various number of variables in the query. The SDD and AC perform similarly for the conjunctive query

and the SDD outperform the AC for the weighted k-threshold query.

E.2 Conditional Log-Likelihoods

Using the training set, we learned models with both LearnSDD and ACMN. For LearnSDD, we tried
setting α to 1.0, 0.1, 0.01 and 0.001. For ACMN, we tried setting the per-split penalty ps to 2, 5 and
10. Because the primary goal of experiment was to evaluate the inference time, the learned AC and
SDD for each data set needed to be of similar size. To ensure this, we first picked the SDD with the
best log-likelihood on the validation data. Subsequently, we selected the AC with the best validation
set log-likelihood that was smaller than the chosen SDD. We picked an SDD first because the largest
SDD for each setting was smaller than the largest AC for each setting.

Figure 7 shows the per example average conditional log-likelihood for the complex queries. The
conditional log-likelihood expresses how close a query’s predicted answer is to its actual answer
according to the data. The higher the log-likelihood of the model, the better it is at answering the
query.

The SDD gives better results for the group query in Figure 7c, in all the other settings, the results
are comparable.

14

-2.5
-2.0
-1.5
-1.0
-0.5
0.0

0 20 40 60 80 100

C
on

di
tio

na
lL

L

% Unknown votes

Timeout

SDD
AC

(a) Threshold query (Voting)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0

0 20 40 60 80 100
C

on
di

tio
na

lL
L

#positive words ≥ 5

Timeout

SDD
AC

(b) Threshold query (Movie)

-0.50

-0.45

-0.40

-0.35

-0.30

0 20 40 60 80 100

C
on

di
tio

na
lL

L

#positive words ≥ #negative words

Timeout

SDD
AC

(c) Group comparison (Movie)

-0.7

-0.6

-0.5

-0.4

-0.3

0 20 40 60 80 100

C
on

di
tio

na
lL

L

variables

Timeout

SDD
AC

(d) Parity (Movie)

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0 20 40 60 80 100

C
on

di
tio

na
lL

L

variables

Timeout

SDD
AC

(e) Conjunctive queries (Movie)

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0

0 20 40 60 80 100

C
on

di
tio

na
lL

L

variables

Timeout

SDD
AC

(f) Weighted threshold (Movie)
Figure 7: Conditional log-likelihood of the answers to the complex queries using an SDD vs. an AC, for

various number of variables in the query. The SDD and AC result in most cases in similar conditional
log-likelihoods.

15

	Introduction
	Background
	Markov Networks
	Tractable Circuit Representations and Tractable Learning

	Learning Algorithm
	Score Function and Weight Learning
	Generating Features

	Complex Queries
	Answering Complex Queries
	Classes of Complex Queries

	Empirical Evaluation
	Data
	Methodology
	Results and Discussion

	Conclusions
	Sentential Decision Diagrams
	Weighted Model Counting
	Protocols for SDD Manipulation
	Adding Features
	Answering Queries

	Proof of Theorem 1
	Complex Query Experiments
	Time Needed by Simpler and Harder Queries
	Conditional Log-Likelihoods

