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Abstract—An artificial neuron with binary inputs and a binary
output corresponds to a Boolean function. Hence, to explain
and verify the behavior of such a neuron (and by extension,
a neural network), it suffices to explain and verify its Boolean
function. There has been recent interest in representing the
Boolean function of such a neuron as an Ordered Binary Decision
Diagram (OBDD), which facilitates such analyses. In this paper,
we propose an anytime algorithm for compiling a binary neuron
into an OBDD, based on a recently proposed compiler that
decomposes a binary neuron’s Boolean function into its prime
implicants, represented as a decision tree. We augment this
compiler so that it outputs an OBDD instead. Our augmented
compiler is also anytime, as it produces intermediate OBDDs
that represent inner- and outer-bounds of the original neuron,
which tighten as compilation progresses. Theoretically, decision
graphs of binary neurons are exponentially more succinct than
their decision trees. Empirically, compilation to decision graphs
can scale to neurons with over a thousand features, compared to
dozens of features using other compilers. We highlight the utility
of our approach via a case study in eXplainable AI.

Index Terms—explainable artificial intelligence (XAI), knowl-
edge compilation, decision diagrams

I. INTRODUCTION

Formal approaches to eXplainable Artificial Intelligence
(XAI) seek to provide mathematical guarantees on the be-
havior of machine learning models [1]–[4]. For example,
consider a neural network with binary inputs and a binary
output. The input/output behavior of such a network can be
faithfully represented as a Boolean function, independent of
any numerical weights or training data that the network could
have. If one is able to extract the Boolean function of a neural
network, then tools and techniques from logical AI (including
SAT solving and model counting) could be used to explain
and formally verify the behavior of the neural network.

We take a knowledge compilation approach to formal XAI
[3]–[5]. Knowledge compilation is a sub-field of AI that stud-
ies tractable Boolean circuits, and the trade-offs between their
succinctness (size of the circuit) and tractability (availability
of polytime queries and transformations) [6], [7]. Our goal is
to compile a classifier into a tractable circuit representation
that facilitates efficient explanation and formal verification.

Recently, there has been growing interest in compiling linear
classifiers (including binary neurons), into Ordered Binary
Decision Diagrams (OBDDs) [8]–[13]. Chan & Darwiche
provided a thorough analysis of the problem, and proposed
an O(n2

n
2 ) algorithm for compiling a linear classifier into an

OBDD [8]. Chubarian & Turan generalized this algorithm to

compile (tree-augmented) naive Bayes classifiers into OBDDs
[11]. In general, compiling a linear classifier into an OBDD
is an NP-hard problem [9]. However, if a binary neuron has
integer weights, it can be compiled into an OBDD in pseudo-
polynomial time [10]. Shi et al. leveraged this algorithm to
compile a neural network of binary neurons into an OBDD,
which was used to analyze the robustness of the network
to adversarial perturbations [10]. More recently, a boosting
approach was proposed to compile linear classifiers to OBDDs
[12]. Kennedy et al. proposed to learn binary neurons that were
guaranteed to have compact OBDDs, directly from data [13].

In this paper, we propose an anytime algorithm for com-
piling binary neurons into OBDDs. It is based on a recently
proposed algorithm that explored the decision tree of a binary
neuron [14], and searched for the prime implicants of its
Boolean function [15]. This search provided inner- and outer-
bounds on the Boolean function, which became tighter with
each prime implicant that was enumerated. We first provide a
simplified view of [14] and propose a more balanced heuristic
that improves the efficiency of search. We then view this
search from the lens of knowledge compilation [16], and
show how to augment the search so that it compresses the
decision tree into a decision graph (i.e., an OBDD). We also
show that this search is anytime: it starts with (vacuous)
inner- and outer-bounds on the neuron’s Boolean function,
which become tighter the more we explore the search space.
Theoretically, we show that the decision graphs of binary
neurons are exponentially more compact than their decision
trees. Empirically, we can compile binary neurons with more
features, by an order-of-magnitude or more, into decision
graphs compared to decision trees. Finally, we provide a case
study in explaining the behavior of a classifier.

This paper is organized as follows. In Section II, we review
binary neurons, viewing them as linear threshold tests. In
Section III, we review how to compile a binary neuron into a
decision tree. In Section IV, we show how to compile a binary
neuron into a decision graph. In Section V, we provide a case
study in XAI, and we conclude in Section VI.

II. TECHNICAL BACKGROUND

A binary neuron is a neuron with binary (0/1) inputs, and a
binary output. If a neuron has n binary inputs X1, . . . , Xn and
a step activation function, then it also has a binary output. It
is thus a binary neuron that represents a function of the form:

f(X1, . . . , Xn) = σ(w1X1 + w2X2 + · · ·+ wnXn + b).



The wi are the neuron’s weights, b is the bias, and the step
function σ(z) outputs 1 if z ≥ 0, and 0 otherwise. For example

f(X1, X2, X3) = σ(2.1 ·X1 +0.9 ·X2 − 1.9 ·X3 − 0.5) (1)

is a binary neuron, where we call f the Boolean function of
the neuron, and call X1, . . . , Xn the variables of f . We can
evaluate this function on all 23 = 8 inputs, and obtain a truth
table of the neuron’s Boolean function:

X1 X2 X3 f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0

X1 X2 X3 f
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Following [14], we view a binary neuron as a threshold test;
cf. [8], [15]. A threshold test is a function f of the form:

f(X1, . . . , Xn) =

{
1 if w1 ·X1 + · · ·+ wn ·Xn ≥ T
0 otherwise

Weights wi are the same as a neuron’s weights, and T is a
threshold, equal to the negated bias −b. Given a setting of
the inputs, if the function f outputs 1, then we say that the
threshold test passes. Otherwise, we say the threshold test fails.

The neuron of Equation 1 has the equivalent threshold test:

2.1 ·X1 + 0.9 ·X2 − 1.9 ·X3 ≥ 0.5. (2)

We say a threshold test f always passes iff the left-hand side
is always greater than or equal to the threshold, no matter how
we set the inputs. We say a threshold test f always fails iff
the left-hand side is always less than the threshold. We call a
threshold test trivial if it always passes or always fails.

Consider the following threshold tests:

−1.9 ·X3 ≥ 0.5 − 1.9 ·X3 ≥ −2.5. (3)

The threshold test on the left is found by setting both X1

and X2 to 0, in the threshold test of Equation 2. This simpler
threshold test always fails, no matter how we set X3. The
threshold test on the right is found by setting both X1 and
X2 to 1, and then subtracting 3 from both sides. The resulting
threshold test always passes, no matter how we set input X3.

Note that the left-hand side is minimized when we set all
variables with positive weights to 0, and those with negative
weights to 1. It is maximized if we set all variables with
positive weights to 1, and those with negative weights to 0.
Thus, the left-hand side of a threshold test has a range [L,U ]
where lower bound L is the sum of all negative weights, and
upper bound U is the sum of all positive weights.

Given a threshold test with threshold T and range [L,U ],
then it always passes iff T ≤ L ≤ U , and it always fails iff
L ≤ U < T . The threshold test of Equation 2 has a range
[−1.9, 3] and a threshold 0.5 and is not trivial. The threshold
test of Equation 3 (left) has a range [−1.9, 0] and a threshold
0.5 and always fails. The threshold test of Equation 3 (right)
has a range [−1.9, 0] and a threshold −2.5 and always passes.

III. BOUNDING THE BEHAVIOR OF A NEURON

Our goal is to obtain a faithful representation of a binary
neuron’s input/output behavior, satisfying the following prop-
erties. First, it is more compact than a truth table. Second,
it facilitates the explanation and formal verification of a
binary neuron’s behavior. Third, it should provide bounds on
a neuron’s behavior, if a complete and faithful representation
is infeasible. Previously, Borowski & Choi showed that the
input/output behavior of a threshold test can be represented
using a decision tree, satisfying all three properties [14].

Definition 1. A (pruned) decision tree for a threshold test f is
a rooted tree, where each node n is annotated with a threshold
test g, and the root note is annotated with f . Nodes n and their
threshold tests g are defined recursively, starting from the root.

• If g is not trivial, node n is an internal node annotated
with decision variable X . Node n has two children, a
low child nx̄ and a high child nx, with the respective
threshold tests gx̄ and gx that are obtained from g by
setting variable X to 0 and 1, respectively.

• If g is trivial, node n is a leaf node (any potential children
are pruned), and is annotated as passing or failing, based
on whether g is always passing or always failing.

Consider, as an example, the following threshold test:

1 ·X1 + 2 ·X2 − 2 ·X2 + 4 ·X4 − 4 ·X5 ≥ 1.

Figure 1 depicts the decision tree of this threshold test, where
each node’s decision variable is the last variable of the node’s
threshold test. The threshold test above appears at the root
node, with decision variable X5 and two children: a low child
found by setting X5 to 0 (following the dashed line), and a
high child found by setting X5 to 1 (following the solid line).
When we set X5 to 0, we obtain a simpler threshold test after
dropping the term −4 ·X5. When we set X5 to 1, we add 4 to
both sides, and obtain a simpler threshold test with a threshold
of 5. We continue setting variables to values until the threshold
test becomes trivial, and the test’s output has been determined.
A threshold test that always passes (outputs 1) or always fails
(outputs 0) is highlighted in green or red, respectively.

Like a truth table, a decision tree encodes the input/output
behavior of a threshold test. Given an input to a threshold
test, we start at the root of the decision tree. We look up the
decision variable, and the value that the input sets to it: if it is
0, follow the low branch, and if it is 1, follow the high branch.
We repeat at the next node, until we reach a leaf node, which
corresponds to a trivial threshold test, and thus the remaining
inputs (if any) do not matter. If the leaf is always passing, we
output 1; otherwise, it is always failing, and we output 0.

Starting at the root of the decision tree, say we are given
(X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0). We first follow
the dashed line, as X5 is set to 0. We then follow the solid
line as X4 is set to 1. The resulting threshold test is always
passing, so the original threshold test (at the root) outputs 1.

Note that there is no need to represent the decision tree
of a trivial threshold test, since its outcome has already been



1·X1 + 2·X2 - 2·X3 + 4·X4 - 4·X5 ≥ 1

1·X1 + 2·X2 - 2·X3 + 4·X4 ≥ 1
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Fig. 1. The decision tree of a threshold test. The decision variable at each node is the last variable of the corresponding threshold test.

determined. Such a (pruned) decision tree can be exponentially
more compact than a truth table. The threshold test X1+ · · ·+
Xn ≥ 0 has a truth table with 2n rows, but its decision tree
has a single node, since the threshold test is always passing.

A. Explaining the Behavior of a Binary Neuron

Since the behavior of a decision tree is (relatively) easy
to explain, we can explain the behavior of a less transparent
classifier (like a neural network), by representing it as a
decision tree; cf. [17]. Typically, the “reason” why a decision
tree labels an input a value, is based on the path that the
decision tree takes to reach that label. Thus, to explain why
a threshold test passes or fails, we take the decision path that
its decision tree takes on a given input. Consider the input
(X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0) in the decision
tree of Figure 1. The decision path (X4 = 1, X5 = 0) ends
at a leaf node whose threshold test is always passing. Thus,
the reason why the threshold test passes is because it always
passes given (X4 = 1, X5 = 0). Such an explanation found a
subset of the inputs that is sufficient for the resulting decision.

This type of explanation of a classifier’s behavior, is called a
prime implicant (PI) explanation, an abductive explanation, or
a sufficient reason [5], [18]–[20]. Such explanations are also
closely related to Anchor explanations [21]. For example, the
reason why a classifier labels an image as a dog, according to
a PI-explanation, is based on finding a (small) sub-image that
is sufficient for the classifier to label the image as a dog. For
example, the presence of a dog’s head and front legs may be
sufficient for a classifier to label an image as a dog.

More formally, a PI-explanation is a prime implicant of
a classifier’s Boolean function. The Boolean function of a
classifier’s decision tree is the disjunction of all its decision
paths (to a given label). Each decision path is the term
(conjunction of literals) of the decisions made on that path.
For example, the decision tree of Figure 1 has the following
Boolean function, based on decision paths to passing leaves:
f(X1, X2, X3, X4, X5) = (x4 ∧ x̄5) ∨ (x2 ∧ x̄3 ∧ x4 ∧ x5) ∨

(x2∧ x̄3∧ x̄4∧ x̄5)∨ (x1∧x2∧x3∧x4∧x5)∨ (x1∧ x̄2∧ x̄3∧
x4 ∧x5)∨ (x1 ∧x2 ∧x3 ∧ x̄4 ∧ x̄5)∨ (x1 ∧ x̄2 ∧ x̄3 ∧ x̄4 ∧ x̄5).
This function is also in Disjunctive Normal Form (DNF). Each
decision path corresponds to a term in the DNF. Each term is
also an implicant of the Boolean function, where an implicant
is a (partial) term that can always be extended to a satisfying
assignment of f (over all variables). That is, an implicant α
entails the Boolean function f , denoted α |= f . An implicant
α is called a prime implicant if no sub-term of α is also an
implicant. The term (x4 ∧ x̄5) is a prime implicant of f. The
term (x2∧ x̄3∧x4∧x5) is an implicant that is not prime, since
literal x5 can be dropped and (x2 ∧ x̄3 ∧ x4) is an implicant.

Thus, a PI-explanation (or sufficient reason) for the decision
of a classifier, is a subset of its input that is also a (short) prime
implicant of the classifier’s Boolean function [5], [18]–[20].

B. Inner and Outer Bounds on the Behavior of a Neuron

A prime cover is a decomposition of a function f into prime
implicants [22]. Previously, [14] compiled a binary neuron
into a (pruned) decision tree, where a prime cover is found
by dropping irrelevant literals from the terms of its decision
paths. The decision tree of Figure 1 has the prime cover:
f(X1, X2, X3, X4, X5) = (x4 ∧ x̄5) ∨ (x2 ∧ x̄3 ∧ x4) ∨ (x2 ∧
x̄3∧x̄5)∨(x1∧x2∧x4)∨(x1∧x̄3∧x4)∨(x1∧x2∧x̄5)∨(x1∧
x̄3∧ x̄5). Note that each prime implicant summarizes a subset
of assignments that satisfy f , with shorter prime implicants
summarizing a larger subset. Similarly, each prime implicant
of the negation ¬f summarizes a subset of assignments that
cannot satisfy f . Hence, by enumerating prime implicants of
f and ¬f , we can cover the total input/output behavior of f .

Say that P and Q are sets of terms representing prime covers
of a Boolean function f and its negation ¬f . Subsets A ⊆ P
and B ⊆ Q yield inner- and outer- bounds on f as follows:1∨

α∈A⊆P α |= f |=
∧

β∈B⊆Q ¬β. (4)

1A function f entails g, denoted f |= g, iff every assignment satisfying f
also satisfies g, i.e., w |= f implies w |= g for all assignments w.



Algorithm 1 compile_decision_tree(f )

input: A threshold test f , with sorted inputs
output: A decision tree for threshold test f
main:

1: make new node r for f
2: initialize priority queue Q with (r, f)
3: while Q is not empty do
4: pop node and threshold test (n, g) from Q
5: if g is not trivial then
6: let glo/ghi be result of setting last input of g to 0/1
7: make new nodes nlo and nhi for glo and ghi
8: make nlo and nhi the low and high children of n
9: push (nlo, glo) and (nhi, ghi) into Q

10: return r

We have a trivial inner-bound (no satisfying assignments are
known) and a trivial outer-bound (no satisfying assignments
are excluded) when the subsets A and B are empty. Larger
subsets A and B provide tighter bounds on f , which become
tight when A and B correspond to prime covers of f and ¬f .

[15] showed how to enumerate the prime implicants of
a linear classifier’s Boolean function, with only a polyno-
mial time delay between each prime implicant. This includes
classifiers like our binary neurons and threshold tests. [14]
showed how best-first search can enumerate the shortest prime
implicants of a threshold test first, which leads to tighter inner-
and outer-bounds, which we review and improve on next.

C. From Binary Neurons to Decision Trees via Search

We view the decision tree of a binary neuron as a search
space. The leaf nodes of the (pruned) decision tree, correspond
to prime implicants of the neuron’s Boolean function, and its
negation. Thus, more efficient navigation of this search space
translates to tighter inner- and outer-bounds. [14] proposed
to explore this search space using best-first search (i.e., A∗

search), using a heuristic that expanded nodes first that were
closest to becoming trivially passing. That is, the search
enumerated the shortest prime implicants first. Empirically,
[14] showed that best-first search enumerates prime implicants
more efficiently than a depth-first search based on [15].

Algorithm 1 summarizes the best-first search of [14]. Given
a threshold test f as input, we first create a root node r from
f , and initialize a priority queue with the pair (r, f). While
the priority queue is not empty, we pop the next node/test pair
(n, g) from the priority queue. If test g is not trivial, then we
find two simpler threshold tests by setting the last input of g
to 1 and 0, making their nodes the high and low children of n.
We push the two node/test pairs back into the priority queue.
If test g is trivial, we do not update the priority queue.

Our first contributions simplify and improve the best-first
search of [14]. First, in Algorithm 1, we assume that the
weights w1, . . . , wn of the input threshold test are sorted, in
increasing order, by the absolute value of their weight. This
simplifies variable selection during search, as the next variable

to set is now the one having the largest weight.2 Second, and
more significantly, we propose a more balanced heuristic, that
expands nodes first based on how close they are to becoming
trivial, either always passing or always failing. Hence, we seek
to tighten both the inner- and outer-bounds at the same time.
In contrast, [14] proposed a simpler approach that tightened
the inner-bound but potentially ignored the outer-bound. In
fact, in their experiments, they performed a second search to
tighten the outer-bound, which is less efficient.

Figure 3(a) depicts the tighter inner- and outer-bounds of
our new heuristic, by evaluating the corresponding lower- and
upper-bounds on the model count of a threshold test [14]; see
also Section V and Footnote 9. We consider the threshold test:

(20 ·X0 − 20 ·X1) + · · ·+ (27 ·X14 − 27 ·X15) ≥ 0

Best-first search progresses as we move left-to-right on the x-
axis, where we enumerate more prime implicants, and evaluate
the resulting model counts on the y-axis. We see that the lower-
bound of [14] (dotted blue line) is initially tight, but the upper-
bound (dotted red line) is loose and essentially ignored until
the end of the search. In contrast, our lower- and upper-bounds
(solid blue and red lines) are both tightened early in the search.

IV. FROM DECISION TREES TO DECISION GRAPHS

Consider the decision tree of Figure 1. Starting at the root,
the path (X5 = 0, X4 = 0) leads to the threshold test: 1 ·X1+
2 ·X2 − 2 ·X3 ≥ 1. The path (X5 = 1, X4 = 1) also arrives
at the same threshold test. Hence, these two nodes represent
two copies of the same decision tree. If we continue at either
node, the two paths (X3 = 0, X2 = 0) and (X3 = 1, X2 = 1)
arrive at the same threshold test: 1 ·X1 ≥ 1. This time, there
are four nodes with four copies of the same decision tree.
By merging equivalent nodes, we can obtain a much more
compact decision graph representation of a threshold test.

Definition 2. A decision graph for a threshold test is a rooted
graph, obtained from a decision tree of the same threshold test,
by merging nodes with equivalent threshold tests.

In Figure 2, we merged all nodes for the same threshold
test into a single node, i.e., we redirected all their parents to
point to the same node. After this simplification, the decision
tree of 27 nodes became a decision graph of only 13 nodes.

Note that to obtain the decision graph of a threshold test,
one does not need to first obtain the corresponding decision
tree. We will soon show how to directly compile a threshold
test into a decision graph. This algorithm relies on checking if
two threshold tests are equivalent, which also determines how
much a decision graph can compress a decision tree.

We say that two threshold tests are equivalent if and only if
they represent the same Boolean function. If two threshold
tests have the same weights and the same threshold, then
obviously, they are equivalent. Unfortunately, it is NP-hard in

2As observed by [15], this is also the fastest way to make a threshold test
trivial, which corresponds to finding the shortest prime implicant.



1·X1 + 2·X2 - 2·X3 + 4·X4 - 4·X5 ≥ 1
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Fig. 2. Enumerating the behavior of a threshold test using a decision graph.

general to decide if two threshold tests are equivalent.3 How-
ever, we propose to use a simple but incomplete equivalence
test that can still find many (but not all) pairs of equivalent
threshold tests, based on the analyses of [8], [10].

In particular, if we assume there is a fixed ordering of the
variables in a decision graph (as we did in Section III), then
two threshold tests at the same depth of the decision graph will
have the same weights on the left-hand side.4 Hence, if they
also have the same threshold, then they must be equivalent.
Thus, we have a sufficient, but not necessary, condition for
equivalence that we can test in constant time. It is also possible
to quantize the weights and thresholds, in a way that tries
to preserve the behavior of the classifier, but encourages the
occurrence of equal thresholds, which in turn, leads to a more
compressed decision graph (with fewer nodes) [10], [13].5

A. Anytime Compilation via Search

We next propose an anytime algorithm to compile a given
binary neuron (or threshold test) into a decision graph, and
more specifically, into an Ordered Binary Decision Diagram
(OBDD).6 We extend the best-first search algorithm of [14]

3Number partitioning is an NP-complete problem, that can be reduced to
testing if an integer threshold test ever meets its threshold exactly [5]. One
can test if a threshold test ever meets its threshold exactly, by testing if it is
equivalent to another threshold test where the threshold is increased by one.

4If we set a variable X to 0 or 1 in a threshold test, the term mentioning
X on the left-hand side becomes a constant, which we move to the right,
updating the threshold. At depth d of the decision tree, we set the last d
inputs, and the sum w1 ·X1 + · · ·+ wn−d ·Xn−d always remains on the
left-hand side. Hence, tests at depth d differ only by their threshold [8], [10].

5We call a threshold test integer if it has integer weights and thresholds. A
(floating-point) threshold test can be made integer, by multiplying both sides
by a constant γ and then truncating. A larger γ better preserves the behavior
of the classifier, but a smaller γ leads to more equal thresholds.

6In the knowledge compilation literature [6], a decision graph is often called
a Binary Decision Diagram (BDD) [23], [24]. If a BDD has a fixed variable
ordering, it is called an OBDD. Note that our decision graphs are not reduced
OBDDs, but they can be easily reduced in a post-processing step. First, the
leaf nodes of always passing (or failing) threshold tests should be merged into
a single 1-sink (or 0-sink). Further, we use a sufficient, but not necessary, test
of threshold test equivalence, hence we miss merging some nodes; cf. [8].

Algorithm 2 compile_decision_graph(f )

input: An integer threshold test f, with sorted inputs
output: A decision graph for threshold test f
main:

1: initialize cache
2: set depth d to 0 and parent node p to n⋆

3: initialize priority queue Q with (p, d, f)
4: while Q is not empty do
5: pop parent node, depth and test (p, d, g) from Q
6: let T be the threshold of test g
7: if key (d, T ) is in cache then
8: n← cache[(d, T )]
9: else if g is not trivial then

10: let n be new node for g
11: cache[(d, T )]← n
12: let glo/ghi be result of setting last input of g to 0/1
13: push (n, d+ 1, glo) and (n, d+ 1, ghi) into Q
14: else if g is trivial then
15: let n be new node for g
16: set n as child of p
17: set depth d to 0 and T be threshold of test f
18: return cache[(d, T )]

and Section III, for compiling a threshold test into a decision
tree. In particular, as we search the space of threshold tests,
by detecting and caching equivalent nodes, the search will
trace the structure of a decision graph [8], [16]. Moreover, any
partial search corresponds to a decision graph representing a
bound on the binary neuron’s Boolean function.

Typically, algorithms for constructing OBDDs use a “unique
table” to detect and eliminate redundant or superfluous nodes
[23]. Compilers that convert Boolean formulas to OBDDs,
also use a “formula cache” to detect and re-use the results
of repeated sub-problems [16], [25], [26]. We thus propose
to cache every threshold test found during search, using the
equivalence test we just proposed. That is, during search, if we
detect that a node that we visit already exists in the cache, we
simply point the parent to the node that we already generated.
Algorithm 2 provides the pseudo-code for the modified search.

Algorithm 2 is also an anytime algorithm, in that any
intermediate result is a valid decision graph that provides an
inner- and outer-bound on the original threshold test’s Boolean
function. Say that any new node created by Algorithm 2 has,
by default, children that point to an always failing node (for the
inner-bound) or an always passing node (for the outer-bound).
Initially, we have a single always failing node (representing
the function false or ⊥) or a single always passing node
(representing the function true or ⊤), This corresponds to
vacuous inner- and outer-bounds: ⊥ |= f |= ⊤. As the best-
first search enumerates more always-passing nodes, we tighten
the inner-bound. As we enumerate more always-failing nodes,
we tighten the outer-bound. Once we have enumerated all
nodes, then the inner- and outer-bounds both become tight.

B. On the Relative Sizes of Decision Graphs and Trees

Decision graphs are well-known to be exponentially more
succinct than decision trees [24]. For example, to represent



the parity function, decision trees and graphs require Ω(2n)
nodes and O(n) nodes, respectively. This does not imply that
the decision graphs of threshold tests are exponentially more
succinct than their decision trees, as a threshold test (or binary
neuron) cannot represent a parity function [27]. However, the
following theorem confirms an exponential separation.

Theorem 1. There is a family of threshold tests whose decision
graphs and decision trees have sizes that are quadratic and
exponential, respectively, in the number of inputs.

Proof. Say we have n inputs X1, . . . , Xn where all weights
wi are 1, and a threshold T . This threshold test corresponds
to a simple threshold gate. Let cg(n, T ) and ct(n, T ) be the
number of internal nodes (representing non-trivial threshold
tests) in the decision graph and tree, respectively. We have
cg(n, T ) = T · (n− T + 1) and ct(n, T ) =

(
n+1
T

)
− 1. When

T = n
2 then cg(n, T ) = Θ(n2) and ct(n, T ) = Θ(2n), which

provides an exponential separation in size.
First, consider cg(n, T ). Let t denote the threshold of an

internal node’s test. We have 0 < t ≤ n, otherwise the
threshold test is trivial. A threshold t appears from depth
d = T − t (all variables were set to 1) to depth n − t (all
remaining variables must be set to 1). For each of the T
possible thresholds, there are (T −t)−(n−t)+1 = T −n+1
different depths it appears in. Hence, there are T · (n−T +1)
internal nodes representing threshold tests that are not trivial.

Next, consider ct(n, T ). Each path to a node in the decision
graph is a path to a unique node in the decision tree. There
are

(
d
s

)
paths to each decision graph node at depth d, where

s = T − t is the number of inputs set to 1. Thus, cg(n, T ) =

T∑
t=1

n−t∑
d=T−t

(
d

T − t

)
=

T−1∑
s=0

n−T+s∑
d=s

(
d

s

)
=

T−1∑
s=0

(
n− T + s+ 1

s+ 1

)

=

T∑
r=1

(
n− T + r

r

)
=

T∑
r=0

(
n− T + r

r

)
− 1 =

(
n+ 1

T

)
− 1

since
∑n

i=r

(
i
r

)
=

(
n+1
r+1

)
and

∑n
k=0

(
r+k
k

)
=

(
r+n+1

n

)
.

Figure 3(b) empirically confirms the scalability of compiling
decision graphs. As in the above proof, all wi = 1 and T = n

2 .
We vary the number of variables n on the x-axis, and report
the compilation time on the y-axis. Compilation of decision
trees surpass 60s after n = 26, while compilation of decision
graphs do not surpass 60s until n is greater than 1,000. Hence,
decision graph compilation scales to problems that are larger
by an order-of-magnitude or more (the x-axis is in log-scale).

V. CASE STUDY

We now highlight how compiling binary neurons to OBDDs
can provide insights about a classifier’s behavior. Consider
the MNIST dataset of 55,000 grayscale images of handwritten
digits, which we binarized to B&W. Each image has 28 ×
28 = 784 pixels, and is labeled with a digit from 0 to 9. We

consider one-vs.-one classification on pairs of digits. We used
scikit-learn to train binary neurons.7

In Figure 3(c), we compare the algorithm of [14] for
compiling decision trees, including our improvements from
Section III, and our compilation algorithm for decision graphs,
from Section IV.8 We first consider the pair of digits (0, 8),
and evaluate the quality of the inner- and outer-bounds from
the anytime compiler, based on the corresponding lower-
and upper-bounds on the binary neuron’s model count.9 We
evaluate the quality of the bounds on the y-axis, as we are
given more time on the x-axis. Upper-bounds are red, lower-
bounds are blue, and the true model count is plotted as a
purple, dashed line. The bounds for the decision tree (dotted
line), tighten slowly and did not converge after 60s. The
bounds for our decision graph (solid line), tighten quickly and
obtain the exact model count after only 2.16s.

We compared both algorithms on all
(
10
2

)
= 45 digit pairs.

Given a 60s time limit, decision tree compilation completed in
only 22 out of 45 pairs, with an average running time of 11.6s
for completed runs. Decision graph compilation completed for
all 45 pairs, with an average running time of 2.7s.

Finally, we highlight how decision graphs provide insight
into a classifier’s behavior; see Figure 4. Using the same 0-
vs.-8 classifier, we classified an image of a 0 and an image of
an 8. We first ask “Why did the image of a 0 get classified
as a 0?” Using the decision graph, we found a PI-explanation
[5], [18]–[20], which is a small set of pixels that are sufficient
for a classifier’s decision. Consider Figure 4(a): a white pixel
to the left, and a few black pixels in the middle are enough
for the classifier to believe the image will be a 0. The reverse
holds true in Figure 4(b), for the image of an 8. This indicates
that the classifier learned a simple heuristic rule to distinguish
a 0 from an 8, which was enough to obtain a training set
accuracy of 97.75%. We also ask: “Why didn’t this image of
a 0 get classified as an 8?” Using the decision graph, we found
a counterfactual explanation [19], [28], [29], which is a small
set of pixels that, if flipped, would result in a reversal of the
classifier’s decision. In Figure 4(c), the highlighted pixels (in
white) correspond to a few black pixels in the middle of the
image that, if flipped to white, would cause the classifier to
label the image as an 8. Analogously for Figure 4(d). These
counterfactual explanations reinforce the idea that the classifier
is using a simple heuristic rule to label these images.

VI. CONCLUSION

In this paper, we proposed an anytime algorithm for com-
piling binary neurons into decision graphs, i.e., OBDDs. We
augmented a recently proposed algorithm for compiling binary
neurons into decision trees, which in turn was based on
searching for prime implicants of a binary neuron’s Boolean

7As in [14], we trained a logistic regression classifier, with L1 penalty, the
liblinear solver, and increased the regularization strength C = 0.003.
To obtain a binary neuron, we replaced the sigmoid with a step activation.

8Source at https://github.com/aboy4321/neuron-compiler
9The model count of a binary neuron is the number of inputs that have a

1-output. It is NP-hard to compute this model count [5]. See [14] for details.
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Fig. 3. (a) Tightness of lower- and upper-bounds (blue and red) based on our new heuristic (solid) versus [14] (dotted). (b) Compilation time (y-axis) in the
decision tree and graph (dashed and solid), with increasing number of variables (x-axis). (c) Tightness of lower- and upper-bounds (blue and red) based on
compilation to decision tree and graph (dotted and solid). In sub-figures (a) & (c), the model count is plotted as a purple and dashed horizontal line.

(a) (b) (c) (d)
Fig. 4. PI-explanations, (a) & (b), and counterfactual explanations, (c) & (d).

function. We first simplified the search, and proposed an
improved heuristic. We then proposed to augment this search
with a cache, which compresses the decision tree into a
decision graph representing inner- and outer-bounds on the
behavior of a neuron, that tighten the more we search. We
proved that the decision graphs of binary neurons can be
exponentially more compact than their decision trees, and
empirically demonstrated improved scalability in practice. We
highlighted the utility of our approach to XAI, via a case study.
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