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Abstract

A neuron with binary inputs and a binary output repre-
sents a Boolean function. Our goal is to extract this Boolean
function into a tractable representation that will facilitate the
explanation and formal verification of a neuron’s behavior. Un-
fortunately, extracting a neuron’s Boolean function is in gen-
eral an NP-hard problem. However, it was recently shown that
prime implicants of this Boolean function can be enumerated
efficiently, with only polynomial time delay. Building on this
result, we first propose a best-first search algorithm that is able
to incrementally tighten the inner and outer bounds of a neu-
ron’s Boolean function. Second, we show that these bounds
correspond to truncated prime-implicant covers of the Boolean
function. Next, we show how these bounds can be propagated
in an elementary class of neural networks. Finally, we provide
case studies that highlight our ability to bound the behavior
of neurons.

1 Introduction

Rapid advances in artificial intelligence, and its increasing pervasiveness, has
brought with it the need to understand and explain the behavior of the result-
ing systems. This need gave rise to a new sub-field of AI, called eXplainable
Artificial Intelligence (XAI).1–4 Formal approaches to XAI, in particular, seek
to provide formal guarantees on the behavior of such systems, e.g., by providing
bounds on the output of a neural network (say, a guarantee that a self-driving
car does not exceed safe driving speeds).5–11

Unfortunately, for a sufficiently powerful notion of explanation, it is NP-hard
to explain the behavior of a neural network.11 For example, deciding if a neural
network ever produces a positive labeling is analogous to testing the satisfiability
of a Boolean formula. Even worse: it is NP-hard to explain the behavior of an
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individual neuron. It is NP-hard to decide if a neuron outputs a 1 more often
than it outputs a 0. It is also NP-hard to compile an individual neuron into a
more tractable representation,7 such as an Ordered Binary Decision Diagram
(OBDD).1

Fortunately, there is recourse to this apparent intractability. For example, a
neuron (with a step-activation) will admit a pseudo-polynomial time compila-
tion into an OBDD if its weights are integers. Further, if the aggregate weight
of such a neuron is bounded, then it can be compiled into an OBDD in poly-
time.16–18 More recently, Marques-Silva et al. showed that prime implicants
(PIs) can be efficiently enumerated from a linear classifier.19 Prime implicants,
and the corresponding PI-explanations (or sufficient explanations), provide a
partial description of the behavior of a classifier.7,9, 20,21 In the same way that
a Boolean function can be decomposed according to its prime implicants, the
behavior of a neuron can be decomposed according to its PI-explanations.

In this paper, our goal is to obtain inner and outer bounds on the behavior
of simple neural networks. We start with the results of Marques-Silva et al.,19

on efficiently enumerating prime implicants from linear classifiers. By corre-
spondingly enumerating prime implicants from a neuron’s Boolean function, we
can obtain inner and outer bounds on the behavior of a neuron. Our first con-
tribution is to formulate this enumeration problem as a best-first search, giving
us the ability to obtain inner and outer bounds that are much tighter that what
we could obtain before. Subsequently, this best-first search yields a polytime
approximation of a neuron’s Boolean function, which we formally characterize
as a truncated prime implicant cover. Towards the longer-term goal of bound-
ing the behavior of deep neural networks, our next contribution is to show how
these inner and outer bounds can be propagated through a network of neurons,
providing inner and outer bounds on an elementary class of neural networks,
hence, going beyond the scope of Marques-Silva et al.19 Empirically, through
two case studies, we show how our algorithm is able to provide near-total cov-
erage of the behavior of neurons, by enumerating a relatively small number of
prime implicants.

This paper is organized as follows. First, in Section 2, we characterize the
behavior of a neuron in simpler terms, as a threshold test. In Section 3, we
show how the behavior of a threshold test can be bounded by prime implicants.
Next, in Section 4, we define a search space over threshold tests, which we
explore via best-first search, to tighten inner and outer bounds on the behavior
of a threshold test. In Section 5, we consider how to propagate these inner and
outer bounds through an elementary class of neural networks. In Section 6, we
work out a simple example of our proposed bounds using a small neural network.
We provide two case studies that highlight our ability to bound the behavior of
neurons, in Section 7. Finally, we conclude in Section 9.

1An OBDD is a tractable representation of a Boolean function that supports polynomial
time transformations and operations,12–14 which facilitate the explanation and formal verifi-
cation of a neuron.8,10 OBDDs are studied in the field of knowledge compilation, a sub-field
of AI that studies in part tractable representations of Boolean functions, and the trade-offs
between their succinctness and tractability.15
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2 On Neurons as Threshold Tests

Consider binary neurons with

1. binary inputs I1, . . . , In that are 0 or 1, and

2. a binary output that is 0 or 1.

Further, assume that the neuron has a step activation σ(x) = 1 if x ≥ 0 and
σ(x) = 0 otherwise. Such a neuron has the form:

f(I1, . . . , In) = σ (w1I1 + w2I2 + · · ·+ wnIn + b)

where wi is the weight on input Ii, and b is a bias. Such a neuron can be viewed
as a function mapping binary inputs to a binary output, i.e., a Boolean function.
We refer to this as the neuron’s Boolean function.

Some binary classifiers, including neurons with step activations, can be
viewed more generally as a threshold test.

Definition 1. A threshold test f is a function with n inputs I1, . . . , In that are
0 or 1, with weights w1, . . . , wn and a threshold T . The output of a threshold
test is 1 iff

w1I1 + w2I2 + ...+ wnIn ≥ T

and we say that the test passes. Otherwise, the output is 0 and we say that the
test fails.

Note that a negated threshold −T is a bias b in a neuron.

Remark 1. The output of a binary neuron is 1 iff the corresponding threshold
test passes.

Consider, as a running example, the following threshold test:

3 · I1 + 2 · I2 − 4 · I3 ≥ 1. (1)

We can enumerate all possible inputs and record the corresponding output, as
we would in a truth table:

I1 I2 I3 f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0

I1 I2 I3 f
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

.

We say that a threshold test f always passes iff the left-hand side is always
greater than or equal to the threshold, no matter how we set the inputs. Simi-
larly, we say that a threshold test f always fails iff the left-hand side is always
less than the threshold. We call a threshold test reduced or trivial if it either
always passes or it always fails.
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In our example, if we set input I1 to 0 and input I2 to 0, then the resulting
threshold test has been reduced and always fails, no matter how we set input
I3:

−4 · I3 ≥ 1. (2)

Suppose instead that we set input I1 to 1 and input I2 to 1. After subtracting
5 from both sides, the resulting threshold test has been reduced and always
passes:

−4 · I3 ≥ −4. (3)

Observe that the left-hand side of a threshold test is minimized by setting all
inputs with positive weight to 0 and all inputs with negative weight to 1. Sim-
ilarly, the left-hand side is maximized by setting all inputs with positive weight
to 1 and all inputs with negative weight to 0. In our example, the left-hand side
has a minimum of -4 and a maximum of 5.

Definition 2. Suppose we have a threshold test f , where we let W+ denote the
set of positive weights and we let W− denote the set of negative weights. The
threshold test f has a lower bound L and upper bound U where:

L =
∑

w∈W−

w U =
∑

w∈W+

w.

The range of a threshold test is thus [L,U ] where:

L ≤ w1I1 + w2I2 + · · ·+ wnIn ≤ U.

for all settings of I1, . . . , In to 0/1 values.

This leads to a simple condition for testing whether a threshold-test always
passes, or always fails.

Proposition 1. Let f be a threshold test with threshold T and range [L,U ].

• A threshold test f always passes iff T ≤ L.

• A threshold test f always fails iff U ≤ T.

The original threshold test of Equation 1 has a range [−4, 5] and a threshold
1 and is not yet reduced. The threshold test of Equation 2 has a range [−4, 0]
and a threshold 1 and thus always fails. The threshold test of Equation 3 has a
range [−4, 0] and a threshold −4 and thus always passes.

3 Bounding the Behavior of a Threshold Test

The function f representing a threshold test outputs a 1 if the threshold test
passes, and outputs a 0 otherwise. Consider a partial setting of the inputs α
that reduces a threshold test into one that always passes. This α is a more
concise description of the behavior of the threshold test, in that it summarizes
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many input settings that cause the threshold test to pass (exponentially many,
in the number of unset inputs).

In logical terms, a (partial) setting of inputs is a conjunction of literals,
which we call a term. A term α is also called an implicant of a Boolean function
f if α entails f, i.e., each extension of a partial setting α to a total setting, over
all inputs, results in an assignment satisfying f . We call α a prime implicant
if no sub-term of α is also an implicant. A prime cover is a decomposition
of a function f into prime implicants.22 The prime cover of a function f may
not be unique, and we generally prefer irredundant covers that contain fewer
implicants. Suppose that a prime cover of f has m implicants αi:

f = α1 ∨ α2 ∨ · · · ∨ αm

Note that each implicant αi summarizes a sub-space of the inputs that satisfy
f . These implicants in aggregate provide a precise description of the behavior
of f . Suppose that we have a subset A of a prime cover of f and a subset B of
a prime cover of ¬f . Such subsets (or truncations) of a prime cover yield inner
and outer bounds on the behavior of f :∨

α∈A

α |= f |=
∧
β∈B

¬β. (4)

Hence, if we can enumerate the prime implicants of a threshold test’s Boolean
function, we can tighten inner and outer bounds on its behavior.

Marques-Silva et al.19 showed that prime implicants can be efficiently enu-
merated for a broad class of linear classifiers, including threshold tests.

Theorem 1. The prime implicants of a linear classifier’s Boolean function can
be enumerated with polynomial delay.

Proof. See Ref. 19.

Next, we provide a simplified perspective on this result, based on best-first
search, where we enumerate the shortest (most informative) prime implicants
first.

4 Enumerating the Space of Threshold Tests

If we fix the input of a threshold test to a value, we obtain a simpler threshold
test with one fewer input. This induces a space of threshold tests based on
setting inputs to values. Figure 1 depicts an example search tree, where each
node represents a threshold test, and where each directed edge f → g represents
the setting of an input in threshold test f to obtain threshold test g. For example,
we have the following threshold test at the root of this tree:

−4 · I1 − 2 · I2 + 3 · I3 + 5 · I4 ≥ 3.
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−4I1 − 2I2 + 3I3 + 5I4 ≥ 3

I4 = 1 I4 = 0

−4I1 − 2I2 + 3I3 ≥ −2 −4I1 − 2I2 + 3I3 ≥ 3

−2I2 + 3I3 ≥ 2 −2I2 + 3I3 ≥ −2 −2I2 + 3I3 ≥ 7 −2I2 + 3I3 ≥ 3

−2I2 ≥ 2−2I2 ≥ −1 −2I2 ≥ 0

−2 ≥ −1 0 ≥ −1 −2 ≥ 0 0 ≥ 0

−2I2 ≥ 3

I1 = 0 I1 = 0

I3 = 0

I2 = 0

I1 = 1 I1 = 1

I3 = 1I3 = 1

I2 = 1 I2 = 1

I3 = 0

I2 = 0

Figure 1: Decision tree over threshold tests.

If we set input I4 to 0, we obtain the simpler threshold test:

−4 · I1 − 2 · I2 + 3 · I3 ≥ 3

by following the dashed edge. If we instead set input I4 to 1, we obtain the
threshold test by following the solid edge:

−4 · I1 − 2 · I2 + 3 · I3 ≥ −2

after subtracting 5 from both sides. We can continue to expand the tree until
we have set all inputs to values, where we have left a comparison between two
constants, which either passes or fails. For example, if we set all inputs to one
(by following all of the solid lines from the root), we obtain the comparison
−2 ≥ −1 which fails.

By expanding all such paths, we obtain a decision tree representing the
threshold test’s Boolean function. Note that once a threshold test reduces to
a trivial one, we need not expand its sub-tree, as all of its leaves will have the
same status (either all passing, or all failing). For example, after setting I4 to
1, and I1 to 0 in the root threshold test we have:

−2 · I2 + 3 · I3 ≥ −2

which has a range [−2, 3] and a threshold −2 and is thus always passing. Thus,
we can prune our decision tree by not expanding sub-trees rooted at trivial
threshold tests.

Consider the paths from the root to each leaf of a threshold test’s decision
tree (pruned or not). Each path is a conjunction of literals (a term) composed
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of the input settings on the path. The decision tree’s Boolean function is the
disjunction of the path terms to the always-passing leaves.

A shallower decision tree has fewer leaves with shorter path terms, and
hence a shallower decision tree represents a more compact representation of a
threshold test’s Boolean function. Our next goal is to find a shallow decision
tree. Subsequently, we will also show how the decision tree represents a prime
cover of the threshold test’s Boolean function.

Suppose, more formally, that we have a threshold test f with inputs I1, . . . , In,
weights w1, . . . , wn, a threshold T and range [L,U ]. When we fix the value of
an input I that has a corresponding weight w, we obtain a simpler threshold
test that has (1) one fewer input, (2) an updated threshold, and (3) an updated
range. We have four cases, based on the sign of the weight and the value that
we set the input to:

• if w ≥ 0 and I=0 then we have updated range [L,U −w] and threshold T

• if w ≥ 0 and I=1 then we have updated range [L,U − w] and threshold
T − w

• if w < 0 and I=0 then we have updated range [L−w,U ] and threshold T

• if w < 0 and I=1 then we have updated range [L − w,U ] and threshold
T − w

We can also quantify how close we are to reducing a threshold test.

Definition 3. Say we have a threshold test f with threshold T and range [L,U ].

• If the threshold test is not always passing, then we have that L < T and
the gap before the test becomes always passing is T − L.

• If the threshold test is not always failing, then we have that T ≤ U and
the gap before the test becomes always failing is U − T .

A setting of an input is called reducing if it reduces the gap.

To close the gap of a threshold test towards always passing, we can set an
input with a negative weight −w to 0 to raise the lower bound L, or we can
set an input with a positive weight w to 1 to lower the threshold T . To close
the gap of a threshold test towards always failing, we can set an input with
a positive weight w to 0 to lower the upper bound U , or we can set an input
with a negative weight −w to 1 to raise the threshold T . In all cases, the gap
decreases by w. Hence, to reduce a threshold test to a trivial one, it suffices to
set inputs to values that close the corresponding gap. To close this gap quickly,
by setting the fewest inputs, it follows from Marques-Silva et al.19 that a greedy
approach suffices. That is, we pick the smallest set of inputs whose aggregate
(absolute) weight meets or exceeds the gap.
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Proposition 2. Suppose we have a threshold test f that is not yet reduced, and
let G be the gap until it becomes always passing (or always failing). To reduce f
to a trivial threshold test, by setting the fewest number of inputs, iteratively pick
the input Ii with largest absolute weight |wi| and set the input to its reducing
value, until the gap is closed.

Proof. See Ref. 19.

Consider the test at the root of the decision tree in Figure 1:

−4 · I1 − 2 · I2 + 3 · I3 + 5 · I4 ≥ 3.

which has range [−6, 8] and threshold 3. The gap until it always passes is
T − L = 3− (−6) = 9, and the fastest way to reduce it is to set I4 to 1 and I1
to 0. The gap until it always fails is U − T = 8− 3 = 5, and the fastest way to
reduce it is to set I4 to 0 and I1 to 1 (note that to reduce it to always failing, we
must strictly clear the gap, as the test passes if the left-hand side is still equal
to the threshold).

4.1 Search in the Decision Tree

As discussed, a shallower decision tree is a more compact representation of a
threshold test’s Boolean function. Once we have fixed the decision tree, we also
want to enumerate its leaves from shallowest to deepest, as shallower leaves have
shorter paths that are more informative.

We propose to answer both points by formulating the problem as a best-first
search (such as A* search) in the decision tree. Initially, we have a priority queue
containing just the initial threshold test, i.e., the root of the decision tree. The
goal states in our search are the leaf nodes that correspond to always-passing
threshold tests. The priority queue ranks threshold tests based on the number
of inputs that need to be set to reduce it to a trivial one; each threshold test
can be scored in polytime using Proposition 2. In each iteration, we pop the
threshold test needing the fewest inputs set to reduce it. We find the unset
input I with largest absolute weight |w|, as in Proposition 2. We produce two
simpler threshold tests found by setting input I to 0 and 1, which we push back
into the priority queue, and go on to the next iteration.

The first goal node that we find will be the shallowest leaf node in the
decision tree, which corresponds to the shortest prime implicant of the decision
tree’s Boolean function.19 We can continue the search to enumerate the next
shallowest leaf node, and the next shallowest leaf node, and so on until we
enumerate all leaf nodes (and we have covered the entire function), or until we
consume the computational resources available to us (and we have only a bound
on the function).

4.2 A Decision Tree is a Prime Cover

Let f denote a decision tree’s Boolean function, which is found by disjoining all
paths to its always-passing leaves, where ¬f is the function found by disjoining
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all paths to the always-failing leaves. If the decision tree is not pruned, then
this representation simply enumerates all models (or satisfying assignments) of
f .

In a pruned decision tree, consider a path α to a leaf representing an always-
passing threshold test. This path α is an implicant of the function f : any
completion of α to all inputs results in a passing threshold test, and thus corre-
sponds to a satisfying assignment of f . Hence, a pruned decision tree represents
a decomposition of the Boolean function f into implicants. For each path α, we
can always obtain from it a prime implicant, using the following Lemma.

Lemma 1. Say we have a threshold test f and a partial assignment γ of its
inputs, where input I is non-reducing. If γ is an implicant of f , then γ \ I is
also an implicant of f .

Proof. Say we have threshold test w1I1 + · · ·+ wnIn ≥ T , its Boolean function
f , and an implicant γ of f . Suppose input Ik was a non-reducing setting in γ.
Since γ is an implicant, setting γ results in an always-true threshold test where
Tγ ≤ [Lγ , Uγ ]. We want to show that κ = γ \ Ik remains an implicant, and
the threshold test is still always-true. Consider two cases. (1) If wk > 0 then
setting Ik to 0 is non-reducing. If we unset Ik, then κ induces another test with
threshold Tκ = Tγ and range Lκ = Lγ and Uκ = Uγ −wI . Since Tγ ≤ Lγ ≤ Uγ ,
we have Tκ ≤ Lκ ≤ Uκ, so the threshold test is still trivial. (2) If wk < 0 then
setting Ik to 1 is non-reducing. If we unset Ik, then κ has a test with threshold
Tκ = Tγ − wk and range Lκ = Lγ − wk and Uκ = Uγ . Since Tγ ≤ Lγ ≤ Uγ , we
have Tκ ≤ Lκ ≤ Uκ.

Corollary 1. If γ is a path to an always-passing leaf found by best-first search,
and α is the result of unsetting all non-reducing inputs in γ, then α is a prime
implicant of the decision tree’s Boolean function.

Proof. Since γ reaches an always-passing leaf, γ is an implicant. By Lemma 1,
we can unset the non-reducing inputs in γ to get another implicant κ. We
cannot unset a reducing input from κ. If we could, we could unset instead the
input used to reach the leaf (since it closes the gap less), so the parent of the
leaf should have been always-passing. Hence, κ must be prime.

It thus follows that a pruned decision tree represents a prime cover of f .

Theorem 2. Say we have a threshold test f , and one of its pruned decision
trees found by best-first search. Suppose we take all paths to always-passing
leaves, and we unset all inputs that are non-reducing. The resulting set of terms
represents a prime cover of the threshold test’s Boolean function.

By enumerating always-passing leaves, we enumerate prime implicants of a
threshold test’s Boolean function f . Similarly, by enumerating always-failing
leaves, we enumerate the prime implicants of ¬f . Thus, we can produce tight-
ening inner and outer bounds on f , as in Equation 4.
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5 Bounding the Behavior of a Simple Neural
Network

Consider a multilayer feedforward neural network. Using the best-first algorithm
that we proposed in the previous section, we can bound the behavior of each
neuron in the network, by enumerating its prime implicants. The more prime
implicants that we enumerate from a neuron, the tighter the inner and outer
bounds that we can obtain on it. In this section, we want to show how we can
aggregate the bounds on the behavior of neurons, and propagate these bounds
through the layers of the network, so that we obtain bounds on the behavior of
the neural network itself.2

In this paper, we consider a simple class of neural networks, and show how
we can obtain bounds on the network from bounds on its neurons. Consider, in
particular, neural networks with:

• n inputs I1, . . . , In,

• two binary neurons n1 and n2 in a hidden layer,

• and a single binary output neuron n3.

For example, the following neural network has 4 inputs I1, I2, I3 and I4:

I1

I2

I3

I4

n1

n2

n3

J1

J2

K

This is perhaps the simplest type of architecture that surpasses the expressive
ability of an individual neuron. For example, this type of structure can capture
the behavior of an exclusive-or (XOR) function (over 2 inputs), which cannot
be represented using a single neuron (or perceptron),27,28 since XOR is not
linearly-separable.

The inputs to neurons n1 and n2 are I1, I2, I3 and I4. The inputs to neuron
n3 are J1 and J2, which correspond to the outputs of neurons n1 and n2. The
output of neuron n3 is K. The neural network itself has inputs I1, I2, I3 and I4,
whereas the output of the neural network is K.

In the previous section, we enumerated all input settings that cause a neuron
to output a one, or equivalently, cause the neuron’s threshold test to pass. Here,

2We distinguish related but orthogonal work based on propagating interval bounds on
ReLU networks.23–26 In such works, the network inputs and outputs are real-valued, and
intervals on the values of the inputs are propagated through the layers of a neural network
to obtain intervals on the value of the network output. Such an analysis can, for example, be
used to verify the robustness of a class label, e.g., that small perturbations in the input will
not significantly change the output.
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we want to enumerate all input settings of a neural network that cause the neural
network to output a one. In our simple network, to reason about what settings
of the inputs I1, I2, I3 and I4 will cause the network output K to be a one, we
need to

1. reason about what settings of the inputs J1 and J2 that will cause the
output K of neuron n3 to be a one, and in turn,

2. reason about what settings of inputs I1, I2, I3 and I4 that will (jointly)
lead to the desired outputs J1 and J2 of neurons n1 and n2.

For example, if J1 and J2 both need to be one for output K of neuron n3 to be
one, we need to find settings of inputs I1, I2, I3 and I4 that cause the outputs
J1 and J2 of neurons n1 and n2 to be one, at the same time.

5.1 Reasoning about the Behavior of the Output Neuron

Consider the output neuron n3, which has two binary inputs, J1 and J2, with
the corresponding threshold test f :

w1 · J1 + w2 · J2 ≥ T.

As in Section 2, this threshold test has a corresponding truth table

J1 J2 f

0 0 a
0 1 b
1 0 c
1 1 d

where the output values a, b, c and d depend on the weights w1 and w2, as well
as the threshold T . For example, if w1 = w2 = 1 and T = 1

2 , then we obtain (by
enumeration) the truth table on the left. As another example, if w1 = w2 = 1
and T = 3

2 , then we obtain the truth table on the right.

J1 J2 f

0 0 0
0 1 1
1 0 1
1 1 1

J1 J2 f

0 0 0
0 1 0
1 0 0
1 1 1

The truth table on the left corresponds to a logical OR function. The one on
the right corresponds to a logical AND function.

Depending on the weights w1, w2 and threshold T of a neuron, (almost)
any truth table could be obtained. First, observe that for a truth table over
two variables, each of its four rows can be either 0 or 1, and hence there are
2 · 2 · 2 · 2 = 16 different truth tables. Second, note that each truth table
corresponds to a unique Boolean function over two variables. As a result, we can
characterize the neuron n3 by the Boolean function that it represents. Finally,
we remark that only 14 out of these 16 different Boolean functions are realizable
by a binary neuron.
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Remark 2. A binary neuron with two binary inputs and a binary output cor-
responds to one of 14 out of 16 different Boolean functions over two variables.

In particular, it is well-known that a linear threshold test (or equivalently,
a perceptron) cannot represent the exclusive-or (XOR) function,27 nor can it
represent the equivalence (EQ) function:

J1 J2 XOR

0 0 0
0 1 1
1 0 1
1 1 0

J1 J2 EQ

0 0 1
0 1 0
1 0 0
1 1 1

.

If n3 is the output neuron, then knowing the Boolean function that it represents
will tell us what the inputs J1 and J2 need to be for the neural network to output
a one (in particular, it suffices to enumerate its truth table). Next, we need to
reason about what the networks inputs I1, . . . , In need to be so that the hidden
neurons n1 and n2 will output the desired values of J1 and J2.

5.2 Reasoning about the Behavior of the Hidden Neurons

Suppose that the output neuron, n3, corresponds to a logical AND function. In
order for the output K to be one, then both of the inputs J1 and J2 need to
be one. We next want to characterize when the inputs I1, . . . , In of the neural
network will lead J1 and J2 to be one.

When we consider the hidden neurons n1 and n2, some input settings will
lead to the output J1 of n1 to be one, and some other input settings will lead to
the output J2 of n2 to be one. Those input settings that are common will lead
to both the outputs J1 and J2 to be one at the same time. These are precisely
the input settings I1, . . . , In that will cause the output neuron n3 to be one,
when it corresponds to a logical AND.

By enumerating the prime implicants of neurons n1 and n2, we can obtain
inner and outer bounds on when their outputs will be one. We want to combine
these bounds, and propagate them through neuron n3 to obtain inner and outer
bounds on when the output of the neural network will be one. As it turns out,
when the output neuron n3 corresponds to a logical AND, it suffices to conjoin
the bounds of the hidden neurons, to obtain bounds on the neural network itself.
Neurons corresponding to other logical functions call for other ways to aggregate
their bounds, as we shall soon see.

Suppose that f is (the Boolean function of) a threshold test. Let fi denote
an inner bound of f , and let fo denote an outer bound of f :

fi |= f |= fo.

Figure 2 (top) visualizes these inner and outer bounds. In particular, each box
visualizes the relationship between a function f and one of its bounds, either
the inner bound fi (top-left) or the outer bound fo (top-right). Each box itself
represents all possible inputs to a function f . Some of those inputs satisfy f
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fi |= f f |= fo

¬fo |= ¬f ¬f |= ¬fi

Figure 2: Inner and outer bounds for the original function f (top) and its
negation ¬f (bottom). The gray shaded region represents the function be-
ing bounded, the blue hatched region represents the inner bound, and the red
hatched region represents the outer bound.

(gray shaded region). An inner bound fi (blue hatched region) covers some,
but not all of those satisfying inputs. An outer bound fo (red hatched region)
covers all of the satisfying inputs, but may cover some inputs that do not satisfy
the original function.

Given the inner and outer bounds of a function f , or of a pair of functions g
and h, we can obtain the inner and outer bounds of their negation, conjunction,
and disjunction, as we show next.

Lemma 2. If we have inner and outer bounds on a function fi |= f |= fo, then
we have inner and outer bounds on the negation:

¬fo |= ¬f |= ¬fi.

If we have inner and outer bounds on a pair of functions, gi |= g |= go and
hi |= h |= ho, then we have inner and outer bounds on their conjunction:

gi ∧ hi |= g ∧ h |= go ∧ ho,

and we have inner and outer bounds on their disjunction:

gi ∨ hi |= g ∨ h |= go ∨ ho.

Proof. First, we review some basic definitions. Let ω denote a world : an assign-
ment of every propositional variable to a value, i.e., a truth assignment. If α
is a propositional sentence, then we say that ω entails α, denoted ω |= α, iff ω
satisfies α. We say that a sentence α entails (or implies) a sentence β, denoted
α |= β, iff for all worlds ω, we have that ω |= α implies ω |= β.
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gi ∧ hi |= g ∧ h g ∧ h |= go ∧ ho

gi ∨ hi |= g ∨ h g ∨ h |= go ∨ ho

Figure 3: Inner and outer bounds for the conjunction g ∧ h (top) and for the
disjunction g ∨ h (bottom). The gray shaded region represents the function
being bounded, the blue hatched region represents the inner bound, and the red
hatched region represents the outer bound.

(Negation) We show that fi |= f implies ¬f |= ¬fi; the same argument can
be used to show that f |= fo implies ¬fo |= ¬f . First, assume fi |= f . By the
definition of entailment (of two sentences), if ω |= fi then ω |= f . From the
contrapositive, if ω ̸|= f then ω ̸|= fi. By the definition of negation, if ω |= ¬f
then ω |= ¬fi. By the definition of entailment, ¬f |= ¬fi.

(Conjunction) We show that gi |= g and hi |= h implies gi ∧ hi |= g ∧ h;
the same argument can be used to show that g |= go and h |= ho implies
g ∧ h |= go ∧ ho. First, assume gi |= g and hi |= h. By the definition of
entailment, if ω |= gi then ω |= g, and if ω |= hi then ω |= h. Thus, if ω |= gi
and ω |= hi, then ω |= g and ω |= h. By the definition of conjunction, if
ω |= gi ∧ hi, then ω |= g ∧ h. By the definition of entailment gi ∧ hi |= g ∧ h.

(Disjunction) The proof is analogous to the conjunction case.

Figures 2 & 3 visualize the bounds of Lemma 2. Consider first Figure 3.
Again, each box visualizes the relationship between a function and one of its
bounds, either the inner bound or the outer bound. The top row considers the
conjunction g∧h and the bottom row considers the disjunction g∨h. The black
circles represent the functions g and h, with the shaded region representing their
conjunction (top) or their disjunction (bottom). The blue circles represent the
inner bounds gi and hi, and the red circles represent the outer bounds go and
ho. The blue hatched regions represent the inner bounds of the conjunction and
disjunction, and the red hatched regions represent the outer bounds.

Figure 2 visualizes the inner and outer bounds on the negation of the function
¬f . The gray shaded regions represent ¬f . The inner bound is found by taking
the negation of the outer bound (the blue hatched region, which is a subset of
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Table 1: Inner and Outer Bounds
id f(X,Y ) truth table inner bound outer bound
0 ⊥ 0000 ⊥ ⊥
1 AND 0001 gi ∧ hi go ∧ ho

2 ̸⇒ 0010 gi ̸⇒ ho go ̸⇒ hi

3 X 0011 gi go
4 ̸⇐ 0100 go ̸⇐ hi gi ̸⇐ ho

5 Y 0101 hi ho

6 XOR 0110 — —
7 OR 0111 gi ∨ hi go ∨ ho

8 NOR 1000 ¬(go ∨ ho) ¬(gi ∨ hi)
9 EQ 1001 — —
10 ¬Y 1010 ¬ho ¬hi

11 ⇐ 1011 gi ⇐ ho go ⇐ hi

12 ¬X 1100 ¬go ¬gi
13 ⇒ 1101 go ⇒ hi gi ⇒ ho

14 NAND 1110 ¬(go ∧ ho) ¬(gi ∧ hi)
15 ⊤ 1111 ⊤ ⊤

the gray shaded region). The outer bound is found by taking the negation of
the inner bound (the red hatched region which is a superset of the gray shaded
region).

Finally, Table 1 lists all 16 different Boolean functions f(X,Y ) over two
variables X and Y . In the third column, the Boolean function’s truth table is
also provided in abbreviated form, i.e., abcd where a is the first row, b is the
second row, etc. Table 1 also provides inner and outer bounds on the outputs
of each Boolean function, given inner an outer bounds on its inputs.

Theorem 3. Let ◦ denote a Boolean function over two variables. If gi |= g |= go
and hi |= h |= ho, then Table 1 provides inner and outer bounds on g ◦ h.

Proof. Rows 0 (false) and 15 (true) are trivial. Row 3 (X) and Row 5 (Y ) are
given. Row 12 (¬X) and Row 10 (¬Y ) follow from Lemma 2 (negation case).

Row 1 (AND) and Row 7 (OR) follow from Lemma 2 (by applying the
conjunction and disjunction cases, respectively). Row 14 (NAND) and Row 8
(NOR) follow next by applying the negation case.

Since X ⇒ Y ≡ ¬X ∨ Y , and X ⇐ Y ≡ X ∨ ¬Y , Row 13 (⇒) and Row
11 (⇐) follow from Lemma 2 (by applying both the negation and disjunction
cases). Row 2 ( ̸⇒) and Row 4 (̸⇐) follow next by applying the negation case
again.

Theorem 3 thus tells us how to obtain inner and outer bounds of our simple
neural network, given inner and outer bounds on the hidden neurons n1 and n2.
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5.3 Towards Bounding the Behavior of Deep Neural Net-
works

We just showed how to bound the behavior of a simple class of neural network
architectures. In particular, since we assume a single hidden layer of two neu-
rons, the output neuron has two inputs, and hence, the behavior of the output
neuron corresponds to one of the simple Boolean functions in Table 1. If the
hidden layer has three or more neurons, the output neuron has three or more
inputs. In this case, the Boolean function of the output neuron, may no longer
be one of the simple ones from Table 1. In general, deep neural networks will
also have many hidden layers, with each layer composed of many neurons. The
behavior of the output neuron will in general correspond to a complex Boolean
function. In principle, one can seek a circuit representation of this Boolean
function.17 One could then propagate bounds through the gates of the resulting
Boolean circuit. We leave the investigation of the efficacy of this approach as
future work.

6 A Complete Example

Consider the following simple neural network over three inputs I1, I2 and I3:

n1

n2

n3

I1

I2

I3

J1

J2

K

Suppose the 3 neurons have the three corresponding threshold tests:

n1 : 3 · I1 + 2 · I2 − 4 · I3 ≥ 1

n2 : 4 · I1 − 1 · I2 − 3 · I3 ≥ 1

n3 : 2 · J1 + 2 · J2 ≥ 3.

Consider first the hidden neuron n1. Let f be the Boolean function correspond-
ing to neuron n1, i.e., f represents all of the inputs where the threshold test for
n1 passes. Using the best-first search algorithm from the previous section, we
can compute the prime cover f = α1 ∨ α2 ∨ α3 with three prime implicants:

α1 = I1 ∧ ¬I3 α2 = I2 ∧ ¬I3 α3 = I1 ∧ I2

Each prime implicant αi summarizes a part of the input space where the thresh-
old test passes, i.e., αi |= f . Further, any subset α1∨· · ·∨αk of the prime cover
yields an inner bound fi of the function f , i.e. fi |= f . We can enumerate the
prime implicants of f one-at-a-time yielding incrementally tighter inner bounds
fi:

16



I1 I2 I3 fi
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

I1 I2 I3 fi
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

I1 I2 I3 fi
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

I1 I2 I3 fi
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

fi = ⊥ fi = α1 fi = α1 ∨ α2 fi = α1 ∨ α2 ∨ α3

Let (I1, I2, I3) denote an input vector. In the first table, when the prime cover is
empty (we use no prime implicants), we obtain the trivial inner bound of false,
denoted by ⊥. The first prime implicant α1 = I1∧¬I3 covers two inputs (1, 0, 0)
and (1, 1, 0), highlighted in bold. The second prime implicant α2 = I2 ∧ ¬I3
covers two input (0, 1, 0) and (1, 1, 0), where input (0, 1, 0) was not already
covered. This new input represents a tighter inner bound, and its addition is
highlighted in bold. Finally, when we add the last prime implicant α3 = I1∧ I2,
which corresponds to two inputs (1, 1, 0) and (1, 1, 1), we cover one additional
input where the threshold test passes, i.e., (1, 1, 1), highlighted in bold. At this
point, we have covered all input cases when the threshold test passes, and our
inner bound fi now matches precisely the neuron’s function f .

Let ¬f be the Boolean function representing all of the inputs where the
threshold test for n1 fails. Using the best-first search algorithm from the pre-
vious section, we can compute the prime cover ¬f = β1 ∨ β2 ∨ β3 with three
prime implicants:

β1 = ¬I1 ∧ I3 β2 = ¬I2 ∧ I3 β3 = ¬I1 ∧ ¬I2
Here, each prime implicant βi summarizes a part of the input space where the
threshold test fails, i.e., where βi |= ¬f, and equivalently, f |= ¬βi. Further,
any subset ¬β1 ∧ · · · ∧ ¬βk of the prime cover yields an outer bound fo of the
function f , i.e. f |= fo. We can enumerate the prime implicants of f one-at-a-
time yielding incrementally tighter outer bounds fo:

I1 I2 I3 fo
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

I1 I2 I3 fo
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

I1 I2 I3 fo
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

I1 I2 I3 fo
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

fo = ⊤ fo = ¬β1 fo = ¬β1 ∧ ¬β2 fo = ¬β1 ∧ ¬β2 ∧ ¬β3

In the first table, when the prime cover is empty, we obtain the trivial outer
bound of true, denoted by ⊤. The first prime implicant β1 = ¬I1∧I3 covers two
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inputs (0, 0, 1) and (0, 1, 1), highlighted in bold. The second prime implicant
β2 = ¬I2 ∧ I3 covers two input (0, 0, 1) and (1, 0, 1), where input (1, 0, 1) was
not already covered. This new input represents a tighter outer bound, and its
addition is highlighted in bold. Finally, when we add the last prime implicant
β3 = ¬I1 ∧¬I2, which corresponds to two inputs (0, 0, 0) and (0, 0, 1), we cover
one additional input where the threshold test fails, i.e., (0, 0, 0), highlighted in
bold. At this point, we have covered all input cases when the threshold test
fails, and our outer bound fo now matches precisely the neuron’s function f
(the same f that we arrived at when we fully tightened our inner bound).

Similarly, neuron n2 has a Boolean function with a prime cover g = α1 ∨ α2

for passing threshold tests, with two prime implicants:

α1 = I1 ∧ ¬I3 α2 = I1 ∧ ¬I2

and a prime cover ¬g = β1 ∨ β2 for failing threshold tests, with two prime
implicants:

β1 = ¬I1 β2 = I2 ∧ I3

We have the following sequence of inner bounds:

I1 I2 I3 gi
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

I1 I2 I3 gi
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

I1 I2 I3 gi
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

gi = ⊥ gi = α1 gi = α1 ∨ α2

and the sequence of outer bounds:

I1 I2 I3 go
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

I1 I2 I3 go
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

I1 I2 I3 go
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

go = ⊤ go = ¬β1 go = ¬β1 ∧ ¬β2

Again, rows are in bold when they provide additional coverage of the input
space.

Neuron n3 is an output neuron with two binary inputs, and a binary output.
Hence, it corresponds to one of 14 different Boolean functions over two variables,
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as in Remark 2. In this case, it corresponds to an AND function, via inspection.
From Theorem 3 (and Lemma 2 more specifically), the bounds on an AND
function can be obtained by conjoining the bounds on its inputs.

Consider the following table, representing the conjunction of the inner bounds.

fi ∧ gi gi = 0000|0000 gi = 0000|1010 gi = 0000|1110
fi = 0000|0000 0000|0000 0000|0000 0000|0000
fi = 0000|1010 0000|0000 0000|1010 0000|1010
fi = 0010|1010 0000|0000 0000|1010 0000|1010
fi = 0010|1011 0000|0000 0000|1010 0000|1010

Each cell of the table corresponds to a truth table, using the abbreviation
abcd|efgh, where a corresponds to the first row (I1, I2, I3) = (0, 0, 0) of the
truth table, b corresponds to the second row (I1, I2, I3) = (0, 0, 1), etc. Each
row of this table, from top-to-bottom, corresponds to increasingly tighter in-
ner bounds gi on neuron n1. Each column, from left-to-right, corresponds to
increasingly tighter inner bounds hi on neuron n2. Each cell represents a con-
junction of two truth tables, one from neuron n1 (from the row header) and
the other from neuron n2 (from the column header). In the upper-left corner,
we have the trivial inner bound of false. As we go from top-to-bottom, and
left-to-right, we discover more 1’s of the truth table, indicating a tighter inner
bound, until we obtain the exact function in the bottom-right corner.

We have a similar table for the outer bound on the output neuron n3.

fo ∧ go go = 1111|1111 go = 0000|1111 go = 0000|1110
fo = 1111|1111 1111|1111 0000|1111 0000|1110
fo = 1010|1111 1010|1111 0000|1111 0000|1110
fo = 1010|1011 1010|1011 0000|1011 0000|1010
fo = 0010|1011 0010|1011 0000|1011 0000|1010

As we go from top-to-bottom, and left-to-right, we discover more 0’s of the truth
table, indicating a tighter outer bound, until we obtain the exact function in
the bottom-right corner.

7 Case Studies

We provide two case studies that highlight our ability to bound the behavior of
a neuron. The first case study considers a dataset of handwritten digits, and
the second case study considers a dataset of Congressional voting records.

7.1 Case Study: Handwritten Digits

We next show how to bound the behavior of a neuron using the MNIST dataset
of handwritten digits. MNIST consists of 55,000 grayscale images, which we
binarized to black-and-white. Each image has 28 × 28 = 784 pixels, and is
labeled with a digit from 0 to 9. We consider one-vs.-one classification over
all

(
10
2

)
= 45 pairs of digits (i, j). The resulting binary classifier for pair (i, j)
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Figure 4: Bounding the behavior of a 0 versus 1 neuron.

corresponds to a Boolean function with 784 binary inputs and one binary output
that is true or false if the digit is i or j. We used the scikit-learn Python
library to train a binary neuron with a step activation.3

Consider Figure 4, which illustrates our ability to bound the behavior of a
neuron, using the best-first search that we proposed. To visualize the inner and
outer bounds of a neuron’s Boolean function f , as in Equation 4, we plot lower
and upper bounds on the model count of f , i.e., the number of its satisfying
assignments. That is, the model count of the inner bound is a lower bound
on the model count of f, and the model count of the outer bound is an upper
bound on the model count.4 As each implicant α that we enumerate yields a
tighter inner and outer bound on f , they also yield a tighter lower and upper
bound on the model count of f .

In Figure 4, where we considered 0-versus-1 digit classification, blue lines
represent lower bounds and red lines represent upper bounds, which meet at
the horizontal purple line representing the neuron’s model count. The model
count represents the number of input settings where the neuron outputs a 1
label, which is roughly 4.57 × 10235 out of 2784 ≈ 1.01 × 10236 possible input
settings. Solid red & blue lines represent the best-first search (BFS) that we
proposed. The dash-dotted lines represent a greedy depth-first search (DFS),
where we set inputs with highest weight first, and to their reducing value first;
greedy DFS represents the enumeration algorithm proposed by Marques-Silva

3We first trained a logistic regression model, with L1 penalty, inverse regularization
strength C = 0.002, and the liblinear solver, and then replaced the sigmoid with a step
activation.

4Note that, if a Boolean function f has n inputs and an implicant α of f has k literals,
then α represents 2n−k models of f : there are n− k missing inputs in α, and thus 2n−k ways
of completing α. By Theorem 2, we obtain a prime cover of a neuron’s Boolean function by
aggregating the reduced paths to the decision tree’s leaves. However, the implicants of a prime
cover are not mutually-exclusive (and may double-count models), whereas the unreduced paths
are mutually-exclusive. Hence, to bound the model count, we use unreduced path costs in our
best-first search.
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Figure 5: Digits classified as a 4 (top row) and as an 8 (bottom row), with their
PI-explanations.

et al.19 which is what our BFS is inspired by, and is what we seek to improve on.
In BFS and greedy DFS, one search was performed to find the lower bound (the
always-passing leaves) and a separate search was performed to find the upper
bound (the always-failing leaves), as the reducing values for upper and lower
bounds are different. The dotted lines represent a naive DFS where inputs were
set in their natural order.

First, we observe that our BFS clearly obtains tighter lower and upper
bounds compared to the alternatives. Naive DFS generates very loose bounds
and nearly the entire decision tree needs to be enumerated before one obtains
tight bounds. Greedy DFS performs much better than naive DFS, but not as
well as our BFS. While greedy DFS explores more promising branches of the
search tree first, once it goes down a branch, it must finish exploring it, unlike
BFS which can explore more promising branches elsewhere. On the other hand,
the space complexity of BFS is linear in the size of the search frontier, which
may become exponentially large.

For each type of search, we also plotted using black vertical lines the point
where each search enumerated 95% of the input space (or a 5% gap between the
bounds), relative to the 2784 possible input settings. To reach this point, BFS
enumerated only 65,176 implicants compared to 176,219 implicants enumerated
by greedy DFS. Both searches enumerated 220,640 total implicants for the lower
bound and 229,964 total implicants for the upper bound. In contrast, naive DFS
had to enumerate 873,228 implicants out of 839,075 and 933,899 total implicants
for its lower and upper bounds. For digit pair (2, 8), greedy DFS enumerated
8.12 times more implicants than our BFS, and naive DFS enumerated 418.52
times more than our BFS. On average, across all 45 pairs of digits, greedy DFS
enumerated 2.74 times more implicants, and naive DFS enumerated 51.11 times
more.

Finally, we highlight how prime implicants can be used to gain insights on
the behavior of a classifier. Figure 5 highlights the results of our 4-vs.-8 digit
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Figure 6: Bounding the behavior of neuron for Congressional voting.

classifier, which labeled the top two images as a 4, and the bottom two images
as an 8. Consider the top-left image of a 4, where we have highlighted six pixels:
three white pixels on the left and right of the image, and three black pixels near
the top of the image. These six pixels are a prime-implicant (PI) explanation
for why the classifier labeled this image as a 4.7,9, 20,21 In particular, these six
pixels are sufficient for the classifier to label the image as a 4; none of the other
pixels matter once these six pixels are fixed. Consider the bottom-left image
of an 8, where the PI-explanation is composed of two black pixels on the left
and right and one white pixel near the top. These two explanations suggest
together that the classifier is using a simple pattern to label an image: looking
at pixels on the left and right suggests that the classifier is trying to detect the
presence of a horizontal stroke in a 4, or its absence in an 8. Similarly, looking
at pixels on the top suggests that the classifier is trying to detect a closed loop
for an 8, or an open one for a 4. This strategy was enough for the classifier
to achieve a training set accuracy of 92.88%, but we are clearly not learning a
robust representation of 4’s and 8’s. The right column of Figure 5 shows images
of an 8 and 4 that evaded this simple pattern, and were thus misclassified.

7.2 Case Study: Congressional Voting

Next, we present a case study using the 1984 Congressional voting records
dataset, from the UCI ML Repository.29 This dataset consists of 435 examples,
one for each member of the U.S. House of Representatives, with 16 attributes,
corresponding to 16 key votes. Each instance is labeled as Republican (R) or
Democrat (D); the classification task is to predict a member’s party given their
key votes. Each key vote can be a y for a yea vote, an n for a nay vote, and a
? if the vote was missing.

After imputing missing votes, based on the majority vote of the member’s
party, the resulting dataset is binary. A 1 output (passing threshold test) corre-
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sponds to a Democrat label, and a 0 output (failing threshold test) corresponds
to a Republican label. We used the scikit-learn library to train a binary
neuron,5 with a training accuracy of 97.70%.

Figure 6 highlights the ability of our enumeration algorithm to bound the
behavior of the neuron that we trained from this dataset. To cover the total
input space, our BFS enumerated 1,243 implicants for the lower bound (blue
solid line) and 1,193 implicants for the upper bound (red solid line). In order
to cover 95% of the input space (highlighted with black vertical bars), our
BFS (solid lines) needed to enumerate only 406 implicants, whereas greedy
DFS (dashed-dotted lines) needed to enumerate over twice as many, using 893
implicants. Naive DFS (dotted lines) needed to enumerate 3,384 implicants.

Table 2 highlights three of the shortest PI-explanations for Republicans (R)
and Democrats (D). We see that, for the neuron that we trained, as few as
5 (of the right) votes are needed to label a Congressmember as a Republican,
and as few as 3 are needed to label a Congressmember as a Democrat. A PI-
explanation’s votes are sufficient to determine the behavior of the classifier: the
values of the remaining votes would not change the classifier’s decision (i.e.,
label).

Table 2 also highlights the vote counts by party for each key vote. From the
PI-explanations, Bills 3 and 4 appear to be important in determining whether
one is a Republican or a Democrat. From the vote counts, Bill 3 was heavily
favored by Democrats and heavily opposed by Republicans, and vice-versa for
Bill 4.6 These two bills were not sufficient to commit to a label; in addition,
some combination of votes on Bills 9, 10, 11 and 12 were also used by the
classifier.7

Finally, consider Figure 7 where we highlight our ability to bound the behav-
ior of a simple neural network trained from the same dataset. As in Section 5,
we trained a binary neural network with two hidden neurons and one output
neuron, using tensorflow,8 where we obtained a neural network with 98.39%
accuracy. Using the best-first search (BFS) algorithm we proposed in Section 3
(which was more efficient than greedy and naive DFS) we enumerated a prime
cover for both hidden neurons, where neuron n1 had 965 prime implicants, and
neuron n2 had 1,070 prime implicants. We further found that the output neuron
corresponded to a logical OR function, by inspection. In Figure 7, we visualize
the inner bound on the behavior of the neural network, by plotting the lower
bound on the model count (the model count was 48, 638). As in Theorem 3,
the inner bound on the network is found by disjoining the inner bounds of the
hidden neurons. On the x and y axes, we increase the number of prime impli-

5We trained a logistic regression model with default parameters.
6Bill 3 proposed to raise taxes, lower military spending, and raise domestic spending. Bill

4 proposed a one-year freeze on physicians’ fees, in an effort to help curb rising healthcare
costs.

7Bill 9 proposed to regulate funding on intercontinental missiles, Bill 10 proposed to restrict
the hiring of unauthorized workers, Bill 11 proposed to decrease funding for synthetic fuels,
and Bill 12 proposed an income tax deduction for educational expenses.

8We assumed sigmoid activations, and minimized mean-squared-error using the Adam
optimizer.
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Table 2: 1984 Congressional Voting Records

bills
PI-explanations vote counts

R1 R2 R3 D1 D2 D3 RY RN R? DY DN D?

1 handicapped-infants - - - - - - 31 134 3 156 102 9
2 water-project-cost-sharing - - - - - - 75 73 20 120 119 28
3 budget-resolution n n n y y y 22 142 4 231 29 7
4 physician-fee-freeze y y y n n n 163 2 3 14 245 8
5 el-salvador-aid - - - - - - 157 8 3 55 200 12
6 religious-groups-in-schools - - - - - - 149 17 2 123 135 9
7 anti-satellite-test-ban - - - - - - 39 123 6 200 59 8
8 aid-to-nicaraguan-contras - - - - - - 24 133 11 218 45 4
9 mx-missile - n n - - - 19 146 3 188 60 19

10 immigration y y - n - - 92 73 3 124 139 4
11 synfuels-corp-cutback n n n - - y 21 138 9 129 126 12
12 education-spending y - y - n - 135 20 13 36 213 18
13 superfund-right-to-sue - - - - - - 136 22 10 73 179 15
14 crime - - - - - - 158 3 7 90 167 10
15 duty-free-exports - - - - - - 14 142 12 160 91 16
16 export-admin-south-africa - - - - - - 96 50 22 173 12 82

cants (explanations) used to form the inner bound on each neuron. When we
use our BFS algorithm to tighten the lower bounds of each input neuron, we
find that we are able to combine the resulting bounds to obtain rapidly tight-
ening lower bounds on the model count of our simple neural network. That is,
relatively few prime implicants need to be enumerated from each neuron until
the lower bound plateaus (less than 200 each). Moreover, in this case, we also
find that it is more important to enumerate prime implicants from neuron n1,
as it contributes more to the final model count of the neural network.

8 Related Work

In the domain of explainable AI (XAI), prime implicants have been used ex-
tensively to explain the behavior of machine learning classifiers, where they
are sometimes referred to as PI-explanations, or sufficient explanations.7,9, 20,21

Anchors are another popular approach to explanations; an Anchor can also be
viewed as a probabilistic version of a prime implicant.3,30 For example, a PI-
explanation for why an image classifier labels an image a dog, would find a
(small) sub-image that is sufficient for the classifier to commit to this decision.
That is, it would find the smallest sub-image that is sufficient for the classifier
to label the image as a dog. These types of explanations are sometimes referred
to as a local explanation of a classifier’s behavior (around a specific input).
Prime implicants, viewed as a decomposition of a classifier’s Boolean function
are sometimes referred to as a global explanation of a classifier’s behavior. In
the latter case, one generally wants the ability to enumerate a classifier’s prime
implicants.
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Figure 7: Bounding the behavior of a simple neural network for Congressional
voting.

Shih et al. proposed an approach for enumerating prime implicants for
Bayesian network classifiers, like naive Bayes classifiers.7 Their algorithm could
also enumerate prime implicants by size, from shortest-to-longest. However,
their approach is based on compiling a naive Bayes classifier to OBDD, which is
NP-hard.7 Further, their enumeration algorithm31 does not have (known) poly-
nomial runtime guarantees. Marques-Silva et al. showed that prime implicants
can in fact be enumerated efficiently for linear classifiers (including naive Bayes
classifiers), and with only a polynomial delay, i.e., only a polynomial amount
of time is spent to enumerate each additional prime implicant.19 While the
first prime implicant is guaranteed to be the shortest, their enumeration algo-
rithm does not guarantee that prime implicants will be enumerated in order by
size. In contrast, the best-first search algorithm that we proposed in Section 4
will enumerate prime implicants from shortest-to-longest. However, we lose the
guarantee of polynomial delay, although in Section 7, we found best-first search
to be much more efficient in terms of covering the input space.

Bounds on the behavior of a neural network have also been developed for
verifying the robustness of neural networks.25,26 Given an input vector to a
neural network, the goal here is to provide a guarantee that small perturbations
to the input will not cause a big change in the output. For example, we may
specify bounds on each input, and seek to propagate such bounds from one
layer to the next (while possibly weakening the bounds). Such approaches are
similar in spirit to the one we proposed in Section 5, although are goals differ.
Our approach seeks to bound the global behavior of a network (i.e., bound the
sub-space of the input that leads to a positive output) versus verifying bounds
on the local behavior of a network (i.e., bound the range of the output based
on small perturbations to the input).
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9 Conclusion

We proposed an approach that incrementally tightens inner and outer bounds
on the behavior of a binary neuron. We build on a recently proposed approach
for efficiently enumerating prime implicants from a linear classifier. We simplify
the problem of enumerating prime implicants, and formulate it as a best-first
search in a space over threshold tests. We show that the inner and outer bounds
correspond to a truncated prime implicant cover of a neuron’s Boolean function.
We further show how these bounds can be propagated through a simple class of
neural networks. Through two case studies, we showed how our best-first search
approach can quickly provide near-total coverage on the behavior of neurons,
compared to other approaches.
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